MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinlem3 Structured version   Visualization version   GIF version

Theorem asinlem3 24718
Description: The argument to the logarithm in df-asin 24712 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
asinlem3 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))

Proof of Theorem asinlem3
StepHypRef Expression
1 0red 10154 . 2 (𝐴 ∈ ℂ → 0 ∈ ℝ)
2 imcl 13971 . 2 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
3 ax-icn 10108 . . . . . . . . 9 i ∈ ℂ
4 negcl 10394 . . . . . . . . . 10 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
54adantr 472 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → -𝐴 ∈ ℂ)
6 mulcl 10133 . . . . . . . . 9 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
73, 5, 6sylancr 698 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (i · -𝐴) ∈ ℂ)
8 ax-1cn 10107 . . . . . . . . . 10 1 ∈ ℂ
95sqcld 13121 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (-𝐴↑2) ∈ ℂ)
10 subcl 10393 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (-𝐴↑2) ∈ ℂ) → (1 − (-𝐴↑2)) ∈ ℂ)
118, 9, 10sylancr 698 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 − (-𝐴↑2)) ∈ ℂ)
1211sqrtcld 14296 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (√‘(1 − (-𝐴↑2))) ∈ ℂ)
137, 12addcld 10172 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ)
14 asinlem 24715 . . . . . . . 8 (-𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
155, 14syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0)
1613, 15absrpcld 14307 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℝ+)
17 2z 11522 . . . . . 6 2 ∈ ℤ
18 rpexpcl 12994 . . . . . 6 (((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℝ+)
1916, 17, 18sylancl 697 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℝ+)
2019rprecred 11997 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) ∈ ℝ)
2113cjcld 14056 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) ∈ ℂ)
2221recld 14054 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) ∈ ℝ)
2319rpreccld 11996 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) ∈ ℝ+)
2423rpge0d 11990 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
25 imneg 13993 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
2625adantr 472 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℑ‘-𝐴) = -(ℑ‘𝐴))
272le0neg2d 10713 . . . . . . . 8 (𝐴 ∈ ℂ → (0 ≤ (ℑ‘𝐴) ↔ -(ℑ‘𝐴) ≤ 0))
2827biimpa 502 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → -(ℑ‘𝐴) ≤ 0)
2926, 28eqbrtrd 4782 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℑ‘-𝐴) ≤ 0)
30 asinlem3a 24717 . . . . . 6 ((-𝐴 ∈ ℂ ∧ (ℑ‘-𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
315, 29, 30syl2anc 696 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
3213recjd 14064 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))) = (ℜ‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
3331, 32breqtrrd 4788 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
3420, 22, 24, 33mulge0d 10717 . . 3 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
35 recval 14182 . . . . . . 7 ((((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ∈ ℂ ∧ ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) ≠ 0) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
3613, 15, 35syl2anc 696 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)))
37 asinlem2 24716 . . . . . . . . 9 (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
3837adantr 472 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1)
3938eqcomd 2730 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 1 = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))
40 1cnd 10169 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 1 ∈ ℂ)
41 simpl 474 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 𝐴 ∈ ℂ)
42 mulcl 10133 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
433, 41, 42sylancr 698 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (i · 𝐴) ∈ ℂ)
44 sqcl 13040 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
4544adantr 472 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (𝐴↑2) ∈ ℂ)
46 subcl 10393 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ)
478, 45, 46sylancr 698 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 − (𝐴↑2)) ∈ ℂ)
4847sqrtcld 14296 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (√‘(1 − (𝐴↑2))) ∈ ℂ)
4943, 48addcld 10172 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ)
5040, 49, 13, 15divmul3d 10948 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ↔ 1 = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5139, 50mpbird 247 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (1 / ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
5219rpcnd 11988 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ∈ ℂ)
5319rpne0d 11991 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2) ≠ 0)
5421, 52, 53divrec2d 10918 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5536, 51, 543eqtr3d 2766 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))))
5655fveq2d 6308 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = (ℜ‘((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5720, 21remul2d 14087 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5856, 57eqtrd 2758 . . 3 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((1 / ((abs‘((i · -𝐴) + (√‘(1 − (-𝐴↑2)))))↑2)) · (ℜ‘(∗‘((i · -𝐴) + (√‘(1 − (-𝐴↑2))))))))
5934, 58breqtrrd 4788 . 2 ((𝐴 ∈ ℂ ∧ 0 ≤ (ℑ‘𝐴)) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
60 asinlem3a 24717 . 2 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
611, 2, 59, 60lecasei 10256 1 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  wne 2896   class class class wbr 4760  cfv 6001  (class class class)co 6765  cc 10047  0cc0 10049  1c1 10050  ici 10051   + caddc 10052   · cmul 10054  cle 10188  cmin 10379  -cneg 10380   / cdiv 10797  2c2 11183  cz 11490  +crp 11946  cexp 12975  ccj 13956  cre 13957  cim 13958  csqrt 14093  abscabs 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-sup 8464  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-rp 11947  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096
This theorem is referenced by:  asinneg  24733  asinbnd  24746  dvasin  33728
  Copyright terms: Public domain W3C validator