MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinsin Structured version   Visualization version   GIF version

Theorem asinsin 24664
Description: The arcsine function composed with sin is equal to the identity. This plus sinasin 24661 allow us to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when 𝐴 = (π / 2) − i𝑦 for nonnegative real 𝑦 and also symmetrically at 𝐴 = i𝑦 − (π / 2). In particular, when restricted to reals this identity extends to the closed interval [-(π / 2), (π / 2)], not just the open interval (see reasinsin 24668). (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
asinsin ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴)

Proof of Theorem asinsin
StepHypRef Expression
1 sincl 14900 . . . 4 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
21adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘𝐴) ∈ ℂ)
3 asinval 24654 . . 3 ((sin‘𝐴) ∈ ℂ → (arcsin‘(sin‘𝐴)) = (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))))
42, 3syl 17 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))))
5 ax-icn 10033 . . . . . . . 8 i ∈ ℂ
6 mulcl 10058 . . . . . . . 8 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
75, 2, 6sylancr 696 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘𝐴)) ∈ ℂ)
8 simpl 472 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
9 mulcl 10058 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
105, 8, 9sylancr 696 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
11 efcl 14857 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) ∈ ℂ)
137, 12pncan3d 10433 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) + ((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = (exp‘(i · 𝐴)))
1412, 7subcld 10430 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) ∈ ℂ)
15 ax-1cn 10032 . . . . . . . . 9 1 ∈ ℂ
162sqcld 13046 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((sin‘𝐴)↑2) ∈ ℂ)
17 subcl 10318 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (1 − ((sin‘𝐴)↑2)) ∈ ℂ)
1815, 16, 17sylancr 696 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 − ((sin‘𝐴)↑2)) ∈ ℂ)
19 binom2sub 13021 . . . . . . . . . 10 (((exp‘(i · 𝐴)) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)))
2012, 7, 19syl2anc 694 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)))
2112sqvald 13045 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴))↑2) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
22 2cn 11129 . . . . . . . . . . . . . 14 2 ∈ ℂ
2322a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ∈ ℂ)
2423, 12, 7mul12d 10283 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴)))) = ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴)))))
2521, 24oveq12d 6708 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
26 coscl 14901 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2726adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ∈ ℂ)
28 subsq 13012 . . . . . . . . . . . . 13 (((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
2927, 7, 28syl2anc 694 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
30 sqmul 12966 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((i · (sin‘𝐴))↑2) = ((i↑2) · ((sin‘𝐴)↑2)))
315, 2, 30sylancr 696 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴))↑2) = ((i↑2) · ((sin‘𝐴)↑2)))
32 i2 13005 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
3332oveq1i 6700 . . . . . . . . . . . . . . . 16 ((i↑2) · ((sin‘𝐴)↑2)) = (-1 · ((sin‘𝐴)↑2))
3416mulm1d 10520 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-1 · ((sin‘𝐴)↑2)) = -((sin‘𝐴)↑2))
3533, 34syl5eq 2697 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i↑2) · ((sin‘𝐴)↑2)) = -((sin‘𝐴)↑2))
3631, 35eqtrd 2685 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴))↑2) = -((sin‘𝐴)↑2))
3736oveq2d 6706 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((cos‘𝐴)↑2) − -((sin‘𝐴)↑2)))
3827sqcld 13046 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘𝐴)↑2) ∈ ℂ)
3938, 16subnegd 10437 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − -((sin‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
4038, 16addcomd 10276 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
4137, 39, 403eqtrd 2689 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴)↑2) − ((i · (sin‘𝐴))↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
42 efival 14926 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4342adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
4472timesd 11313 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · (sin‘𝐴))) = ((i · (sin‘𝐴)) + (i · (sin‘𝐴))))
4543, 44oveq12d 6708 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴)))) = (((cos‘𝐴) + (i · (sin‘𝐴))) − ((i · (sin‘𝐴)) + (i · (sin‘𝐴)))))
4627, 7, 7pnpcan2d 10468 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) − ((i · (sin‘𝐴)) + (i · (sin‘𝐴)))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
4745, 46eqtrd 2685 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴)))) = ((cos‘𝐴) − (i · (sin‘𝐴))))
4843, 47oveq12d 6708 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴))))) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))))
49 mulcl 10058 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → (2 · (i · (sin‘𝐴))) ∈ ℂ)
5022, 7, 49sylancr 696 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (2 · (i · (sin‘𝐴))) ∈ ℂ)
5112, 12, 50subdid 10524 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (2 · (i · (sin‘𝐴))))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
5248, 51eqtr3d 2687 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐴) − (i · (sin‘𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
5329, 41, 523eqtr3d 2693 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (2 · (i · (sin‘𝐴))))))
54 sincossq 14950 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
5554adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
5625, 53, 553eqtr2d 2691 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) = 1)
5756, 36oveq12d 6708 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((((exp‘(i · 𝐴))↑2) − (2 · ((exp‘(i · 𝐴)) · (i · (sin‘𝐴))))) + ((i · (sin‘𝐴))↑2)) = (1 + -((sin‘𝐴)↑2)))
58 negsub 10367 . . . . . . . . . 10 ((1 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → (1 + -((sin‘𝐴)↑2)) = (1 − ((sin‘𝐴)↑2)))
5915, 16, 58sylancr 696 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 + -((sin‘𝐴)↑2)) = (1 − ((sin‘𝐴)↑2)))
6020, 57, 593eqtrd 2689 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))↑2) = (1 − ((sin‘𝐴)↑2)))
61 halfre 11284 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
6261a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 / 2) ∈ ℝ)
63 negicn 10320 . . . . . . . . . . . . . . 15 -i ∈ ℂ
64 mulcl 10058 . . . . . . . . . . . . . . 15 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
6563, 8, 64sylancr 696 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · 𝐴) ∈ ℂ)
66 efcl 14857 . . . . . . . . . . . . . 14 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
6765, 66syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(-i · 𝐴)) ∈ ℂ)
6812, 67addcld 10097 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
6968recld 13978 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℝ)
70 halfgt0 11286 . . . . . . . . . . . 12 0 < (1 / 2)
7170a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (1 / 2))
7212recld 13978 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(i · 𝐴))) ∈ ℝ)
7367recld 13978 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(-i · 𝐴))) ∈ ℝ)
74 asinsinlem 24663 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴))))
75 negcl 10319 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
7675adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -𝐴 ∈ ℂ)
77 reneg 13909 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
7877adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘-𝐴) = -(ℜ‘𝐴))
79 recl 13894 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
80 halfpire 24261 . . . . . . . . . . . . . . . . . . . . 21 (π / 2) ∈ ℝ
8180renegcli 10380 . . . . . . . . . . . . . . . . . . . 20 -(π / 2) ∈ ℝ
82 iooneg 12330 . . . . . . . . . . . . . . . . . . . 20 ((-(π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2))))
8381, 80, 82mp3an12 1454 . . . . . . . . . . . . . . . . . . 19 ((ℜ‘𝐴) ∈ ℝ → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2))))
8479, 83syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2))))
8584biimpa 500 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(ℜ‘𝐴) ∈ (-(π / 2)(,)--(π / 2)))
8680recni 10090 . . . . . . . . . . . . . . . . . . 19 (π / 2) ∈ ℂ
8786negnegi 10389 . . . . . . . . . . . . . . . . . 18 --(π / 2) = (π / 2)
8887oveq2i 6701 . . . . . . . . . . . . . . . . 17 (-(π / 2)(,)--(π / 2)) = (-(π / 2)(,)(π / 2))
8985, 88syl6eleq 2740 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
9078, 89eqeltrd 2730 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘-𝐴) ∈ (-(π / 2)(,)(π / 2)))
91 asinsinlem 24663 . . . . . . . . . . . . . . 15 ((-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · -𝐴))))
9276, 90, 91syl2anc 694 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · -𝐴))))
93 mulneg12 10506 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
945, 8, 93sylancr 696 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · 𝐴) = (i · -𝐴))
9594fveq2d 6233 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(-i · 𝐴)) = (exp‘(i · -𝐴)))
9695fveq2d 6233 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(-i · 𝐴))) = (ℜ‘(exp‘(i · -𝐴))))
9792, 96breqtrrd 4713 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(-i · 𝐴))))
9872, 73, 74, 97addgt0d 10640 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < ((ℜ‘(exp‘(i · 𝐴))) + (ℜ‘(exp‘(-i · 𝐴)))))
9912, 67readdd 13998 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = ((ℜ‘(exp‘(i · 𝐴))) + (ℜ‘(exp‘(-i · 𝐴)))))
10098, 99breqtrrd 4713 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
10162, 69, 71, 100mulgt0d 10230 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
102 cosval 14897 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
103102adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
104 2ne0 11151 . . . . . . . . . . . . . . 15 2 ≠ 0
105104a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 2 ≠ 0)
10668, 23, 105divrec2d 10843 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) = ((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
107103, 106eqtrd 2685 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = ((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
108107fveq2d 6233 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(cos‘𝐴)) = (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
109 remul2 13914 . . . . . . . . . . . 12 (((1 / 2) ∈ ℝ ∧ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ) → (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
11061, 68, 109sylancr 696 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((1 / 2) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
111108, 110eqtrd 2685 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(cos‘𝐴)) = ((1 / 2) · (ℜ‘((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
112101, 111breqtrrd 4713 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(cos‘𝐴)))
11343oveq1d 6705 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) = (((cos‘𝐴) + (i · (sin‘𝐴))) − (i · (sin‘𝐴))))
11427, 7pncand 10431 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) − (i · (sin‘𝐴))) = (cos‘𝐴))
115113, 114eqtrd 2685 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) = (cos‘𝐴))
116115fveq2d 6233 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = (ℜ‘(cos‘𝐴)))
117112, 116breqtrrd 4713 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))))
11814, 18, 60, 117eqsqrt2d 14152 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(i · 𝐴)) − (i · (sin‘𝐴))) = (√‘(1 − ((sin‘𝐴)↑2))))
119118oveq2d 6706 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((i · (sin‘𝐴)) + ((exp‘(i · 𝐴)) − (i · (sin‘𝐴)))) = ((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))
12013, 119eqtr3d 2687 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))
121120fveq2d 6233 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(i · 𝐴))) = (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2))))))
122 pire 24255 . . . . . . . . . 10 π ∈ ℝ
123122renegcli 10380 . . . . . . . . 9 -π ∈ ℝ
124123a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π ∈ ℝ)
12581a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) ∈ ℝ)
126 elioore 12243 . . . . . . . . 9 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝐴) ∈ ℝ)
127126adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
128 pirp 24258 . . . . . . . . . . 11 π ∈ ℝ+
129 rphalflt 11898 . . . . . . . . . . 11 (π ∈ ℝ+ → (π / 2) < π)
130128, 129ax-mp 5 . . . . . . . . . 10 (π / 2) < π
13180, 122ltnegi 10610 . . . . . . . . . 10 ((π / 2) < π ↔ -π < -(π / 2))
132130, 131mpbi 220 . . . . . . . . 9 -π < -(π / 2)
133132a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < -(π / 2))
134 eliooord 12271 . . . . . . . . . 10 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
135134adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
136135simpld 474 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -(π / 2) < (ℜ‘𝐴))
137124, 125, 127, 133, 136lttrd 10236 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℜ‘𝐴))
138 imre 13892 . . . . . . . . 9 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
13910, 138syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
1405, 5mulneg1i 10514 . . . . . . . . . . . 12 (-i · i) = -(i · i)
141 ixi 10694 . . . . . . . . . . . . 13 (i · i) = -1
142141negeqi 10312 . . . . . . . . . . . 12 -(i · i) = --1
14315negnegi 10389 . . . . . . . . . . . 12 --1 = 1
144140, 142, 1433eqtri 2677 . . . . . . . . . . 11 (-i · i) = 1
145144oveq1i 6700 . . . . . . . . . 10 ((-i · i) · 𝐴) = (1 · 𝐴)
14663a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -i ∈ ℂ)
1475a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
148146, 147, 8mulassd 10101 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
149 mulid2 10076 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
150149adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
151145, 148, 1503eqtr3a 2709 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · (i · 𝐴)) = 𝐴)
152151fveq2d 6233 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
153139, 152eqtrd 2685 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
154137, 153breqtrrd 4713 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -π < (ℑ‘(i · 𝐴)))
155122a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℝ)
15680a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (π / 2) ∈ ℝ)
157135simprd 478 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < (π / 2))
158130a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (π / 2) < π)
159127, 156, 155, 157, 158lttrd 10236 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) < π)
160127, 155, 159ltled 10223 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ≤ π)
161153, 160eqbrtrd 4707 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) ≤ π)
162 ellogrn 24351 . . . . . 6 ((i · 𝐴) ∈ ran log ↔ ((i · 𝐴) ∈ ℂ ∧ -π < (ℑ‘(i · 𝐴)) ∧ (ℑ‘(i · 𝐴)) ≤ π))
16310, 154, 161, 162syl3anbrc 1265 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ran log)
164 logef 24373 . . . . 5 ((i · 𝐴) ∈ ran log → (log‘(exp‘(i · 𝐴))) = (i · 𝐴))
165163, 164syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘(exp‘(i · 𝐴))) = (i · 𝐴))
166121, 165eqtr3d 2687 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2))))) = (i · 𝐴))
167166oveq2d 6706 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · (log‘((i · (sin‘𝐴)) + (√‘(1 − ((sin‘𝐴)↑2)))))) = (-i · (i · 𝐴)))
1684, 167, 1513eqtrd 2689 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  ran crn 5144  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975  ici 9976   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  2c2 11108  +crp 11870  (,)cioo 12213  cexp 12900  cre 13881  cim 13882  csqrt 14017  expce 14836  sincsin 14838  cosccos 14839  πcpi 14841  logclog 24346  arcsincasin 24634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-asin 24637
This theorem is referenced by:  acoscos  24665  reasinsin  24668  asinsinb  24669
  Copyright terms: Public domain W3C validator