MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinsinlem Structured version   Visualization version   GIF version

Theorem asinsinlem 25471
Description: Lemma for asinsin 25472. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
asinsinlem ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴))))

Proof of Theorem asinsinlem
StepHypRef Expression
1 ax-icn 10598 . . . . . 6 i ∈ ℂ
2 simpl 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
3 mulcl 10623 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 589 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
54recld 14555 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(i · 𝐴)) ∈ ℝ)
65reefcld 15443 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(ℜ‘(i · 𝐴))) ∈ ℝ)
7 simpr 487 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
8 neghalfpirx 25054 . . . . . . 7 -(π / 2) ∈ ℝ*
9 halfpire 25052 . . . . . . . 8 (π / 2) ∈ ℝ
109rexri 10701 . . . . . . 7 (π / 2) ∈ ℝ*
11 elioo2 12782 . . . . . . 7 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ -(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2))))
128, 10, 11mp2an 690 . . . . . 6 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ -(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
137, 12sylib 220 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) ∈ ℝ ∧ -(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
1413simp1d 1138 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
1514recoscld 15499 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ∈ ℝ)
16 efgt0 15458 . . . 4 ((ℜ‘(i · 𝐴)) ∈ ℝ → 0 < (exp‘(ℜ‘(i · 𝐴))))
175, 16syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (exp‘(ℜ‘(i · 𝐴))))
18 cosq14gt0 25098 . . . 4 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘(ℜ‘𝐴)))
1918adantl 484 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (cos‘(ℜ‘𝐴)))
206, 15, 17, 19mulgt0d 10797 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < ((exp‘(ℜ‘(i · 𝐴))) · (cos‘(ℜ‘𝐴))))
21 efeul 15517 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) = ((exp‘(ℜ‘(i · 𝐴))) · ((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴)))))))
224, 21syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((exp‘(ℜ‘(i · 𝐴))) · ((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴)))))))
2322fveq2d 6676 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(i · 𝐴))) = (ℜ‘((exp‘(ℜ‘(i · 𝐴))) · ((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴))))))))
244imcld 14556 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) ∈ ℝ)
2524recoscld 15499 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℑ‘(i · 𝐴))) ∈ ℝ)
2625recnd 10671 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℑ‘(i · 𝐴))) ∈ ℂ)
2724resincld 15498 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘(ℑ‘(i · 𝐴))) ∈ ℝ)
2827recnd 10671 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘(ℑ‘(i · 𝐴))) ∈ ℂ)
29 mulcl 10623 . . . . . 6 ((i ∈ ℂ ∧ (sin‘(ℑ‘(i · 𝐴))) ∈ ℂ) → (i · (sin‘(ℑ‘(i · 𝐴)))) ∈ ℂ)
301, 28, 29sylancr 589 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘(ℑ‘(i · 𝐴)))) ∈ ℂ)
3126, 30addcld 10662 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴))))) ∈ ℂ)
326, 31remul2d 14588 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(ℜ‘(i · 𝐴))) · ((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴))))))) = ((exp‘(ℜ‘(i · 𝐴))) · (ℜ‘((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴))))))))
3325, 27crred 14592 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴)))))) = (cos‘(ℑ‘(i · 𝐴))))
34 imre 14469 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
354, 34syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
361, 1mulneg1i 11088 . . . . . . . . . . 11 (-i · i) = -(i · i)
37 ixi 11271 . . . . . . . . . . . 12 (i · i) = -1
3837negeqi 10881 . . . . . . . . . . 11 -(i · i) = --1
39 negneg1e1 11758 . . . . . . . . . . 11 --1 = 1
4036, 38, 393eqtri 2850 . . . . . . . . . 10 (-i · i) = 1
4140oveq1i 7168 . . . . . . . . 9 ((-i · i) · 𝐴) = (1 · 𝐴)
42 negicn 10889 . . . . . . . . . . 11 -i ∈ ℂ
4342a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -i ∈ ℂ)
441a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
4543, 44, 2mulassd 10666 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
46 mulid2 10642 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
4746adantr 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
4841, 45, 473eqtr3a 2882 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · (i · 𝐴)) = 𝐴)
4948fveq2d 6676 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
5035, 49eqtrd 2858 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
5150fveq2d 6676 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℑ‘(i · 𝐴))) = (cos‘(ℜ‘𝐴)))
5233, 51eqtrd 2858 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴)))))) = (cos‘(ℜ‘𝐴)))
5352oveq2d 7174 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(ℜ‘(i · 𝐴))) · (ℜ‘((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴))))))) = ((exp‘(ℜ‘(i · 𝐴))) · (cos‘(ℜ‘𝐴))))
5423, 32, 533eqtrd 2862 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(i · 𝐴))) = ((exp‘(ℜ‘(i · 𝐴))) · (cos‘(ℜ‘𝐴))))
5520, 54breqtrrd 5096 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  -cneg 10873   / cdiv 11299  2c2 11695  (,)cioo 12741  cre 14458  cim 14459  expce 15417  sincsin 15419  cosccos 15420  πcpi 15422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  asinsin  25472
  Copyright terms: Public domain W3C validator