MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinsinlem Structured version   Visualization version   GIF version

Theorem asinsinlem 24363
Description: Lemma for asinsin 24364. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
asinsinlem ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴))))

Proof of Theorem asinsinlem
StepHypRef Expression
1 ax-icn 9852 . . . . . 6 i ∈ ℂ
2 simpl 471 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
3 mulcl 9877 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 693 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · 𝐴) ∈ ℂ)
54recld 13731 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(i · 𝐴)) ∈ ℝ)
65reefcld 14606 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(ℜ‘(i · 𝐴))) ∈ ℝ)
7 simpr 475 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
8 neghalfpirx 23967 . . . . . . 7 -(π / 2) ∈ ℝ*
9 halfpire 23965 . . . . . . . 8 (π / 2) ∈ ℝ
109rexri 9949 . . . . . . 7 (π / 2) ∈ ℝ*
11 elioo2 12046 . . . . . . 7 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ -(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2))))
128, 10, 11mp2an 703 . . . . . 6 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℜ‘𝐴) ∈ ℝ ∧ -(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
137, 12sylib 206 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((ℜ‘𝐴) ∈ ℝ ∧ -(π / 2) < (ℜ‘𝐴) ∧ (ℜ‘𝐴) < (π / 2)))
1413simp1d 1065 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
1514recoscld 14662 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ∈ ℝ)
16 efgt0 14621 . . . 4 ((ℜ‘(i · 𝐴)) ∈ ℝ → 0 < (exp‘(ℜ‘(i · 𝐴))))
175, 16syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (exp‘(ℜ‘(i · 𝐴))))
18 cosq14gt0 24011 . . . 4 ((ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘(ℜ‘𝐴)))
1918adantl 480 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (cos‘(ℜ‘𝐴)))
206, 15, 17, 19mulgt0d 10044 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < ((exp‘(ℜ‘(i · 𝐴))) · (cos‘(ℜ‘𝐴))))
21 efeul 14680 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) = ((exp‘(ℜ‘(i · 𝐴))) · ((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴)))))))
224, 21syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (exp‘(i · 𝐴)) = ((exp‘(ℜ‘(i · 𝐴))) · ((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴)))))))
2322fveq2d 6092 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(i · 𝐴))) = (ℜ‘((exp‘(ℜ‘(i · 𝐴))) · ((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴))))))))
244imcld 13732 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) ∈ ℝ)
2524recoscld 14662 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℑ‘(i · 𝐴))) ∈ ℝ)
2625recnd 9925 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℑ‘(i · 𝐴))) ∈ ℂ)
2724resincld 14661 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘(ℑ‘(i · 𝐴))) ∈ ℝ)
2827recnd 9925 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘(ℑ‘(i · 𝐴))) ∈ ℂ)
29 mulcl 9877 . . . . . 6 ((i ∈ ℂ ∧ (sin‘(ℑ‘(i · 𝐴))) ∈ ℂ) → (i · (sin‘(ℑ‘(i · 𝐴)))) ∈ ℂ)
301, 28, 29sylancr 693 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (i · (sin‘(ℑ‘(i · 𝐴)))) ∈ ℂ)
3126, 30addcld 9916 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴))))) ∈ ℂ)
326, 31remul2d 13764 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((exp‘(ℜ‘(i · 𝐴))) · ((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴))))))) = ((exp‘(ℜ‘(i · 𝐴))) · (ℜ‘((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴))))))))
3325, 27crred 13768 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴)))))) = (cos‘(ℑ‘(i · 𝐴))))
34 imre 13645 . . . . . . . 8 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
354, 34syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
361, 1mulneg1i 10328 . . . . . . . . . . 11 (-i · i) = -(i · i)
37 ixi 10508 . . . . . . . . . . . 12 (i · i) = -1
3837negeqi 10126 . . . . . . . . . . 11 -(i · i) = --1
39 negneg1e1 10978 . . . . . . . . . . 11 --1 = 1
4036, 38, 393eqtri 2635 . . . . . . . . . 10 (-i · i) = 1
4140oveq1i 6537 . . . . . . . . 9 ((-i · i) · 𝐴) = (1 · 𝐴)
42 negicn 10134 . . . . . . . . . . 11 -i ∈ ℂ
4342a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → -i ∈ ℂ)
441a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → i ∈ ℂ)
4543, 44, 2mulassd 9920 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((-i · i) · 𝐴) = (-i · (i · 𝐴)))
46 mulid2 9895 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
4746adantr 479 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (1 · 𝐴) = 𝐴)
4841, 45, 473eqtr3a 2667 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (-i · (i · 𝐴)) = 𝐴)
4948fveq2d 6092 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
5035, 49eqtrd 2643 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
5150fveq2d 6092 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℑ‘(i · 𝐴))) = (cos‘(ℜ‘𝐴)))
5233, 51eqtrd 2643 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴)))))) = (cos‘(ℜ‘𝐴)))
5352oveq2d 6543 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((exp‘(ℜ‘(i · 𝐴))) · (ℜ‘((cos‘(ℑ‘(i · 𝐴))) + (i · (sin‘(ℑ‘(i · 𝐴))))))) = ((exp‘(ℜ‘(i · 𝐴))) · (cos‘(ℜ‘𝐴))))
5423, 32, 533eqtrd 2647 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (ℜ‘(exp‘(i · 𝐴))) = ((exp‘(ℜ‘(i · 𝐴))) · (cos‘(ℜ‘𝐴))))
5520, 54breqtrrd 4605 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  cfv 5790  (class class class)co 6527  cc 9791  cr 9792  0cc0 9793  1c1 9794  ici 9795   + caddc 9796   · cmul 9798  *cxr 9930   < clt 9931  -cneg 10119   / cdiv 10536  2c2 10920  (,)cioo 12005  cre 13634  cim 13635  expce 14580  sincsin 14582  cosccos 14583  πcpi 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ioc 12010  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-fac 12881  df-bc 12910  df-hash 12938  df-shft 13604  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-limsup 13999  df-clim 14016  df-rlim 14017  df-sum 14214  df-ef 14586  df-sin 14588  df-cos 14589  df-pi 14591  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-limc 23381  df-dv 23382
This theorem is referenced by:  asinsin  24364
  Copyright terms: Public domain W3C validator