MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asinval Structured version   Visualization version   GIF version

Theorem asinval 25454
Description: Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
asinval (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))

Proof of Theorem asinval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7158 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
2 oveq1 7157 . . . . . . 7 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
32oveq2d 7166 . . . . . 6 (𝑥 = 𝐴 → (1 − (𝑥↑2)) = (1 − (𝐴↑2)))
43fveq2d 6668 . . . . 5 (𝑥 = 𝐴 → (√‘(1 − (𝑥↑2))) = (√‘(1 − (𝐴↑2))))
51, 4oveq12d 7168 . . . 4 (𝑥 = 𝐴 → ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2)))))
65fveq2d 6668 . . 3 (𝑥 = 𝐴 → (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))) = (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))
76oveq2d 7166 . 2 (𝑥 = 𝐴 → (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
8 df-asin 25437 . 2 arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))))
9 ovex 7183 . 2 (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ V
107, 8, 9fvmpt 6762 1 (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  cc 10529  1c1 10532  ici 10533   + caddc 10534   · cmul 10536  cmin 10864  -cneg 10865  2c2 11686  cexp 13423  csqrt 14586  logclog 25132  arcsincasin 25434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7153  df-asin 25437
This theorem is referenced by:  asinneg  25458  efiasin  25460  asinsin  25464  asin1  25466  asinbnd  25471  areacirclem4  34979
  Copyright terms: Public domain W3C validator