MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspid Structured version   Visualization version   GIF version

Theorem aspid 19311
Description: The algebraic span of a subalgebra is itself. (spanid 28176 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpan‘𝑊)
aspval.v 𝑉 = (Base‘𝑊)
aspval.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
aspid ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿) → (𝐴𝑆) = 𝑆)

Proof of Theorem aspid
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 simp1 1059 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿) → 𝑊 ∈ AssAlg)
2 aspval.v . . . . 5 𝑉 = (Base‘𝑊)
32subrgss 18762 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑆𝑉)
433ad2ant2 1081 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿) → 𝑆𝑉)
5 aspval.a . . . 4 𝐴 = (AlgSpan‘𝑊)
6 aspval.l . . . 4 𝐿 = (LSubSp‘𝑊)
75, 2, 6aspval 19309 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
81, 4, 7syl2anc 692 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
9 3simpc 1058 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿) → (𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿))
10 elin 3788 . . . 4 (𝑆 ∈ ((SubRing‘𝑊) ∩ 𝐿) ↔ (𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿))
119, 10sylibr 224 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿) → 𝑆 ∈ ((SubRing‘𝑊) ∩ 𝐿))
12 intmin 4488 . . 3 (𝑆 ∈ ((SubRing‘𝑊) ∩ 𝐿) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} = 𝑆)
1311, 12syl 17 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} = 𝑆)
148, 13eqtrd 2654 1 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆𝐿) → (𝐴𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  {crab 2913  cin 3566  wss 3567   cint 4466  cfv 5876  Basecbs 15838  SubRingcsubrg 18757  LSubSpclss 18913  AssAlgcasa 19290  AlgSpancasp 19291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-0g 16083  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-mgp 18471  df-ur 18483  df-ring 18530  df-subrg 18759  df-lmod 18846  df-lss 18914  df-assa 19293  df-asp 19294
This theorem is referenced by:  mplbas2  19451  mplind  19483
  Copyright terms: Public domain W3C validator