![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > assaassr | Structured version Visualization version GIF version |
Description: Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
isassa.v | ⊢ 𝑉 = (Base‘𝑊) |
isassa.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isassa.b | ⊢ 𝐵 = (Base‘𝐹) |
isassa.s | ⊢ · = ( ·𝑠 ‘𝑊) |
isassa.t | ⊢ × = (.r‘𝑊) |
Ref | Expression |
---|---|
assaassr | ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isassa.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | isassa.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | isassa.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
4 | isassa.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | isassa.t | . . 3 ⊢ × = (.r‘𝑊) | |
6 | 1, 2, 3, 4, 5 | assalem 19364 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) |
7 | 6 | simprd 478 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 .rcmulr 15989 Scalarcsca 15991 ·𝑠 cvsca 15992 AssAlgcasa 19357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 df-assa 19360 |
This theorem is referenced by: assa2ass 19370 issubassa 19372 asclmul2 19388 asclrhm 19390 assamulgscmlem2 19397 mplmon2mul 19549 matinv 20531 cpmadugsumlemC 20728 |
Copyright terms: Public domain | W3C validator |