MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assalem Structured version   Visualization version   GIF version

Theorem assalem 20017
Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
assalem ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))

Proof of Theorem assalem
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isassa.v . . . 4 𝑉 = (Base‘𝑊)
2 isassa.f . . . 4 𝐹 = (Scalar‘𝑊)
3 isassa.b . . . 4 𝐵 = (Base‘𝐹)
4 isassa.s . . . 4 · = ( ·𝑠𝑊)
5 isassa.t . . . 4 × = (.r𝑊)
61, 2, 3, 4, 5isassa 20016 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
76simprbi 497 . 2 (𝑊 ∈ AssAlg → ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
8 oveq1 7152 . . . . . 6 (𝑟 = 𝐴 → (𝑟 · 𝑥) = (𝐴 · 𝑥))
98oveq1d 7160 . . . . 5 (𝑟 = 𝐴 → ((𝑟 · 𝑥) × 𝑦) = ((𝐴 · 𝑥) × 𝑦))
10 oveq1 7152 . . . . 5 (𝑟 = 𝐴 → (𝑟 · (𝑥 × 𝑦)) = (𝐴 · (𝑥 × 𝑦)))
119, 10eqeq12d 2834 . . . 4 (𝑟 = 𝐴 → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ↔ ((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦))))
12 oveq1 7152 . . . . . 6 (𝑟 = 𝐴 → (𝑟 · 𝑦) = (𝐴 · 𝑦))
1312oveq2d 7161 . . . . 5 (𝑟 = 𝐴 → (𝑥 × (𝑟 · 𝑦)) = (𝑥 × (𝐴 · 𝑦)))
1413, 10eqeq12d 2834 . . . 4 (𝑟 = 𝐴 → ((𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)) ↔ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦))))
1511, 14anbi12d 630 . . 3 (𝑟 = 𝐴 → ((((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ (((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦)))))
16 oveq2 7153 . . . . . 6 (𝑥 = 𝑋 → (𝐴 · 𝑥) = (𝐴 · 𝑋))
1716oveq1d 7160 . . . . 5 (𝑥 = 𝑋 → ((𝐴 · 𝑥) × 𝑦) = ((𝐴 · 𝑋) × 𝑦))
18 oveq1 7152 . . . . . 6 (𝑥 = 𝑋 → (𝑥 × 𝑦) = (𝑋 × 𝑦))
1918oveq2d 7161 . . . . 5 (𝑥 = 𝑋 → (𝐴 · (𝑥 × 𝑦)) = (𝐴 · (𝑋 × 𝑦)))
2017, 19eqeq12d 2834 . . . 4 (𝑥 = 𝑋 → (((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ↔ ((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦))))
21 oveq1 7152 . . . . 5 (𝑥 = 𝑋 → (𝑥 × (𝐴 · 𝑦)) = (𝑋 × (𝐴 · 𝑦)))
2221, 19eqeq12d 2834 . . . 4 (𝑥 = 𝑋 → ((𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦)) ↔ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦))))
2320, 22anbi12d 630 . . 3 (𝑥 = 𝑋 → ((((𝐴 · 𝑥) × 𝑦) = (𝐴 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝐴 · 𝑦)) = (𝐴 · (𝑥 × 𝑦))) ↔ (((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ∧ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦)))))
24 oveq2 7153 . . . . 5 (𝑦 = 𝑌 → ((𝐴 · 𝑋) × 𝑦) = ((𝐴 · 𝑋) × 𝑌))
25 oveq2 7153 . . . . . 6 (𝑦 = 𝑌 → (𝑋 × 𝑦) = (𝑋 × 𝑌))
2625oveq2d 7161 . . . . 5 (𝑦 = 𝑌 → (𝐴 · (𝑋 × 𝑦)) = (𝐴 · (𝑋 × 𝑌)))
2724, 26eqeq12d 2834 . . . 4 (𝑦 = 𝑌 → (((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ↔ ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))))
28 oveq2 7153 . . . . . 6 (𝑦 = 𝑌 → (𝐴 · 𝑦) = (𝐴 · 𝑌))
2928oveq2d 7161 . . . . 5 (𝑦 = 𝑌 → (𝑋 × (𝐴 · 𝑦)) = (𝑋 × (𝐴 · 𝑌)))
3029, 26eqeq12d 2834 . . . 4 (𝑦 = 𝑌 → ((𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦)) ↔ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
3127, 30anbi12d 630 . . 3 (𝑦 = 𝑌 → ((((𝐴 · 𝑋) × 𝑦) = (𝐴 · (𝑋 × 𝑦)) ∧ (𝑋 × (𝐴 · 𝑦)) = (𝐴 · (𝑋 × 𝑦))) ↔ (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))))
3215, 23, 31rspc3v 3633 . 2 ((𝐴𝐵𝑋𝑉𝑌𝑉) → (∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))))
337, 32mpan9 507 1 ((𝑊 ∈ AssAlg ∧ (𝐴𝐵𝑋𝑉𝑌𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  cfv 6348  (class class class)co 7145  Basecbs 16471  .rcmulr 16554  Scalarcsca 16556   ·𝑠 cvsca 16557  Ringcrg 19226  CRingccrg 19227  LModclmod 19563  AssAlgcasa 20010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-nul 5201
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356  df-ov 7148  df-assa 20013
This theorem is referenced by:  assaass  20018  assaassr  20019
  Copyright terms: Public domain W3C validator