MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscmlem1 Structured version   Visualization version   GIF version

Theorem assamulgscmlem1 20122
Description: Lemma 1 for assamulgscm 20124 (induction base). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscmlem1 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))

Proof of Theorem assamulgscmlem1
StepHypRef Expression
1 assalmod 20086 . . . 4 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
2 assaring 20087 . . . . 5 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
3 assamulgscm.v . . . . . 6 𝑉 = (Base‘𝑊)
4 eqid 2821 . . . . . 6 (1r𝑊) = (1r𝑊)
53, 4ringidcl 19312 . . . . 5 (𝑊 ∈ Ring → (1r𝑊) ∈ 𝑉)
62, 5syl 17 . . . 4 (𝑊 ∈ AssAlg → (1r𝑊) ∈ 𝑉)
7 assamulgscm.f . . . . . 6 𝐹 = (Scalar‘𝑊)
8 assamulgscm.s . . . . . 6 · = ( ·𝑠𝑊)
9 eqid 2821 . . . . . 6 (1r𝐹) = (1r𝐹)
103, 7, 8, 9lmodvs1 19656 . . . . 5 ((𝑊 ∈ LMod ∧ (1r𝑊) ∈ 𝑉) → ((1r𝐹) · (1r𝑊)) = (1r𝑊))
1110eqcomd 2827 . . . 4 ((𝑊 ∈ LMod ∧ (1r𝑊) ∈ 𝑉) → (1r𝑊) = ((1r𝐹) · (1r𝑊)))
121, 6, 11syl2anc 586 . . 3 (𝑊 ∈ AssAlg → (1r𝑊) = ((1r𝐹) · (1r𝑊)))
1312adantl 484 . 2 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (1r𝑊) = ((1r𝐹) · (1r𝑊)))
141adantl 484 . . . 4 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod)
15 simpll 765 . . . 4 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴𝐵)
16 simplr 767 . . . 4 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋𝑉)
17 assamulgscm.b . . . . 5 𝐵 = (Base‘𝐹)
183, 7, 8, 17lmodvscl 19645 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐵𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
1914, 15, 16, 18syl3anc 1367 . . 3 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉)
20 assamulgscm.h . . . . 5 𝐻 = (mulGrp‘𝑊)
2120, 3mgpbas 19239 . . . 4 𝑉 = (Base‘𝐻)
2220, 4ringidval 19247 . . . 4 (1r𝑊) = (0g𝐻)
23 assamulgscm.e . . . 4 𝐸 = (.g𝐻)
2421, 22, 23mulg0 18225 . . 3 ((𝐴 · 𝑋) ∈ 𝑉 → (0𝐸(𝐴 · 𝑋)) = (1r𝑊))
2519, 24syl 17 . 2 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = (1r𝑊))
26 assamulgscm.g . . . . . 6 𝐺 = (mulGrp‘𝐹)
2726, 17mgpbas 19239 . . . . 5 𝐵 = (Base‘𝐺)
2826, 9ringidval 19247 . . . . 5 (1r𝐹) = (0g𝐺)
29 assamulgscm.p . . . . 5 = (.g𝐺)
3027, 28, 29mulg0 18225 . . . 4 (𝐴𝐵 → (0 𝐴) = (1r𝐹))
3115, 30syl 17 . . 3 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0 𝐴) = (1r𝐹))
3221, 22, 23mulg0 18225 . . . 4 (𝑋𝑉 → (0𝐸𝑋) = (1r𝑊))
3316, 32syl 17 . . 3 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸𝑋) = (1r𝑊))
3431, 33oveq12d 7168 . 2 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((0 𝐴) · (0𝐸𝑋)) = ((1r𝐹) · (1r𝑊)))
3513, 25, 343eqtr4d 2866 1 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (0𝐸(𝐴 · 𝑋)) = ((0 𝐴) · (0𝐸𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  0cc0 10531  Basecbs 16477  Scalarcsca 16562   ·𝑠 cvsca 16563  .gcmg 18218  mulGrpcmgp 19233  1rcur 19245  Ringcrg 19291  LModclmod 19628  AssAlgcasa 20076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-seq 13364  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mulg 18219  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-assa 20079
This theorem is referenced by:  assamulgscm  20124
  Copyright terms: Public domain W3C validator