![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > assasca | Structured version Visualization version GIF version |
Description: An associative algebra's scalar field is a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
assasca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
assasca | ⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | assasca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2651 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
4 | eqid 2651 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
5 | eqid 2651 | . . . 4 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
6 | 1, 2, 3, 4, 5 | isassa 19363 | . . 3 ⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑧 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠 ‘𝑊)𝑥)(.r‘𝑊)𝑦) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦)) ∧ (𝑥(.r‘𝑊)(𝑧( ·𝑠 ‘𝑊)𝑦)) = (𝑧( ·𝑠 ‘𝑊)(𝑥(.r‘𝑊)𝑦))))) |
7 | 6 | simplbi 475 | . 2 ⊢ (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing)) |
8 | 7 | simp3d 1095 | 1 ⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 .rcmulr 15989 Scalarcsca 15991 ·𝑠 cvsca 15992 Ringcrg 18593 CRingccrg 18594 LModclmod 18911 AssAlgcasa 19357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 df-assa 19360 |
This theorem is referenced by: assa2ass 19370 issubassa 19372 asclrhm 19390 assamulgscmlem2 19397 |
Copyright terms: Public domain | W3C validator |