MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assasca Structured version   Visualization version   GIF version

Theorem assasca 20097
Description: An associative algebra's scalar field is a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
assasca.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
assasca (𝑊 ∈ AssAlg → 𝐹 ∈ CRing)

Proof of Theorem assasca
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 assasca.f . . . 4 𝐹 = (Scalar‘𝑊)
3 eqid 2824 . . . 4 (Base‘𝐹) = (Base‘𝐹)
4 eqid 2824 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 eqid 2824 . . . 4 (.r𝑊) = (.r𝑊)
61, 2, 3, 4, 5isassa 20091 . . 3 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑧 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑧( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑧( ·𝑠𝑊)𝑦)) = (𝑧( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
76simplbi 500 . 2 (𝑊 ∈ AssAlg → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing))
87simp3d 1140 1 (𝑊 ∈ AssAlg → 𝐹 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  cfv 6358  (class class class)co 7159  Basecbs 16486  .rcmulr 16569  Scalarcsca 16571   ·𝑠 cvsca 16572  Ringcrg 19300  CRingccrg 19301  LModclmod 19637  AssAlgcasa 20085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-nul 5213
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-iota 6317  df-fv 6366  df-ov 7162  df-assa 20088
This theorem is referenced by:  assa2ass  20098  issubassa3  20100  ascldimulOLD  20120  asclrhm  20122  assamulgscmlem2  20132
  Copyright terms: Public domain W3C validator