MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm2 Structured version   Visualization version   GIF version

Theorem atandm2 24318
Description: This form of atandm 24317 is a bit more useful for showing that the logarithms in df-atan 24308 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))

Proof of Theorem atandm2
StepHypRef Expression
1 atandm 24317 . 2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
2 3anass 1034 . . 3 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)))
3 ax-1cn 9847 . . . . . . . . . 10 1 ∈ ℂ
4 ax-icn 9848 . . . . . . . . . . 11 i ∈ ℂ
5 mulcl 9873 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
64, 5mpan 701 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
7 subeq0 10155 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1 − (i · 𝐴)) = 0 ↔ 1 = (i · 𝐴)))
83, 6, 7sylancr 693 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ 1 = (i · 𝐴)))
94, 4mulneg2i 10324 . . . . . . . . . . . 12 (i · -i) = -(i · i)
10 ixi 10502 . . . . . . . . . . . . 13 (i · i) = -1
1110negeqi 10122 . . . . . . . . . . . 12 -(i · i) = --1
12 negneg1e1 10972 . . . . . . . . . . . 12 --1 = 1
139, 11, 123eqtri 2632 . . . . . . . . . . 11 (i · -i) = 1
1413eqeq2i 2618 . . . . . . . . . 10 ((i · 𝐴) = (i · -i) ↔ (i · 𝐴) = 1)
15 eqcom 2613 . . . . . . . . . 10 ((i · 𝐴) = 1 ↔ 1 = (i · 𝐴))
1614, 15bitri 262 . . . . . . . . 9 ((i · 𝐴) = (i · -i) ↔ 1 = (i · 𝐴))
178, 16syl6bbr 276 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ (i · 𝐴) = (i · -i)))
18 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
194negcli 10197 . . . . . . . . . 10 -i ∈ ℂ
2019a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → -i ∈ ℂ)
214a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → i ∈ ℂ)
22 ine0 10313 . . . . . . . . . 10 i ≠ 0
2322a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → i ≠ 0)
2418, 20, 21, 23mulcand 10506 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) = (i · -i) ↔ 𝐴 = -i))
2517, 24bitrd 266 . . . . . . 7 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ 𝐴 = -i))
2625necon3bid 2822 . . . . . 6 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) ≠ 0 ↔ 𝐴 ≠ -i))
27 addcom 10070 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) = ((i · 𝐴) + 1))
283, 6, 27sylancr 693 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) = ((i · 𝐴) + 1))
29 subneg 10178 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
306, 3, 29sylancl 692 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
3128, 30eqtr4d 2643 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) = ((i · 𝐴) − -1))
3231eqeq1d 2608 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ ((i · 𝐴) − -1) = 0))
333negcli 10197 . . . . . . . . . . 11 -1 ∈ ℂ
34 subeq0 10155 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ -1 ∈ ℂ) → (((i · 𝐴) − -1) = 0 ↔ (i · 𝐴) = -1))
356, 33, 34sylancl 692 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((i · 𝐴) − -1) = 0 ↔ (i · 𝐴) = -1))
3632, 35bitrd 266 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ (i · 𝐴) = -1))
3710eqeq2i 2618 . . . . . . . . 9 ((i · 𝐴) = (i · i) ↔ (i · 𝐴) = -1)
3836, 37syl6bbr 276 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ (i · 𝐴) = (i · i)))
3918, 21, 21, 23mulcand 10506 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) = (i · i) ↔ 𝐴 = i))
4038, 39bitrd 266 . . . . . . 7 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ 𝐴 = i))
4140necon3bid 2822 . . . . . 6 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) ≠ 0 ↔ 𝐴 ≠ i))
4226, 41anbi12d 742 . . . . 5 (𝐴 ∈ ℂ → (((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
4342pm5.32i 666 . . . 4 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
44 3anass 1034 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
4543, 44bitr4i 265 . . 3 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
462, 45bitri 262 . 2 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
471, 46bitr4i 265 1 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2776  dom cdm 5025  (class class class)co 6524  cc 9787  0cc0 9789  1c1 9790  ici 9791   + caddc 9792   · cmul 9794  cmin 10114  -cneg 10115  arctancatan 24305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-po 4946  df-so 4947  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-atan 24308
This theorem is referenced by:  atanf  24321  atanneg  24348  atancj  24351  efiatan  24353  atanlogaddlem  24354  atanlogadd  24355  atanlogsublem  24356  atanlogsub  24357  efiatan2  24358  2efiatan  24359  atantan  24364  atanbndlem  24366  dvatan  24376  atantayl  24378
  Copyright terms: Public domain W3C validator