MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm2 Structured version   Visualization version   GIF version

Theorem atandm2 25382
Description: This form of atandm 25381 is a bit more useful for showing that the logarithms in df-atan 25372 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))

Proof of Theorem atandm2
StepHypRef Expression
1 atandm 25381 . 2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
2 3anass 1087 . . 3 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)))
3 ax-1cn 10584 . . . . . . . . . 10 1 ∈ ℂ
4 ax-icn 10585 . . . . . . . . . . 11 i ∈ ℂ
5 mulcl 10610 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
64, 5mpan 686 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
7 subeq0 10901 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1 − (i · 𝐴)) = 0 ↔ 1 = (i · 𝐴)))
83, 6, 7sylancr 587 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ 1 = (i · 𝐴)))
94, 4mulneg2i 11076 . . . . . . . . . . . 12 (i · -i) = -(i · i)
10 ixi 11258 . . . . . . . . . . . . 13 (i · i) = -1
1110negeqi 10868 . . . . . . . . . . . 12 -(i · i) = --1
12 negneg1e1 11744 . . . . . . . . . . . 12 --1 = 1
139, 11, 123eqtri 2848 . . . . . . . . . . 11 (i · -i) = 1
1413eqeq2i 2834 . . . . . . . . . 10 ((i · 𝐴) = (i · -i) ↔ (i · 𝐴) = 1)
15 eqcom 2828 . . . . . . . . . 10 ((i · 𝐴) = 1 ↔ 1 = (i · 𝐴))
1614, 15bitri 276 . . . . . . . . 9 ((i · 𝐴) = (i · -i) ↔ 1 = (i · 𝐴))
178, 16syl6bbr 290 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ (i · 𝐴) = (i · -i)))
18 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
194negcli 10943 . . . . . . . . . 10 -i ∈ ℂ
2019a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → -i ∈ ℂ)
214a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → i ∈ ℂ)
22 ine0 11064 . . . . . . . . . 10 i ≠ 0
2322a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → i ≠ 0)
2418, 20, 21, 23mulcand 11262 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) = (i · -i) ↔ 𝐴 = -i))
2517, 24bitrd 280 . . . . . . 7 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ 𝐴 = -i))
2625necon3bid 3060 . . . . . 6 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) ≠ 0 ↔ 𝐴 ≠ -i))
27 addcom 10815 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) = ((i · 𝐴) + 1))
283, 6, 27sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) = ((i · 𝐴) + 1))
29 subneg 10924 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
306, 3, 29sylancl 586 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
3128, 30eqtr4d 2859 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) = ((i · 𝐴) − -1))
3231eqeq1d 2823 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ ((i · 𝐴) − -1) = 0))
333negcli 10943 . . . . . . . . . . 11 -1 ∈ ℂ
34 subeq0 10901 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ -1 ∈ ℂ) → (((i · 𝐴) − -1) = 0 ↔ (i · 𝐴) = -1))
356, 33, 34sylancl 586 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((i · 𝐴) − -1) = 0 ↔ (i · 𝐴) = -1))
3632, 35bitrd 280 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ (i · 𝐴) = -1))
3710eqeq2i 2834 . . . . . . . . 9 ((i · 𝐴) = (i · i) ↔ (i · 𝐴) = -1)
3836, 37syl6bbr 290 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ (i · 𝐴) = (i · i)))
3918, 21, 21, 23mulcand 11262 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) = (i · i) ↔ 𝐴 = i))
4038, 39bitrd 280 . . . . . . 7 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ 𝐴 = i))
4140necon3bid 3060 . . . . . 6 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) ≠ 0 ↔ 𝐴 ≠ i))
4226, 41anbi12d 630 . . . . 5 (𝐴 ∈ ℂ → (((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
4342pm5.32i 575 . . . 4 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
44 3anass 1087 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
4543, 44bitr4i 279 . . 3 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
462, 45bitri 276 . 2 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
471, 46bitr4i 279 1 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3016  dom cdm 5549  (class class class)co 7145  cc 10524  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860  arctancatan 25369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-atan 25372
This theorem is referenced by:  atanf  25385  atanneg  25412  atancj  25415  efiatan  25417  atanlogaddlem  25418  atanlogadd  25419  atanlogsublem  25420  atanlogsub  25421  efiatan2  25422  2efiatan  25423  atantan  25428  atanbndlem  25430  dvatan  25440  atantayl  25442
  Copyright terms: Public domain W3C validator