MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandmtan Structured version   Visualization version   GIF version

Theorem atandmtan 25490
Description: The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandmtan ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan)

Proof of Theorem atandmtan
StepHypRef Expression
1 tancl 15474 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ)
2 tanval 15473 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
32oveq1d 7163 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴) / (cos‘𝐴))↑2))
4 sincl 15471 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
54adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) ∈ ℂ)
6 coscl 15472 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
76adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ∈ ℂ)
8 simpr 487 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ≠ 0)
95, 7, 8sqdivd 13515 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
103, 9eqtrd 2854 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
115sqcld 13500 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ∈ ℂ)
127sqcld 13500 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ∈ ℂ)
1312negcld 10976 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((cos‘𝐴)↑2) ∈ ℂ)
1411, 12subnegd 10996 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
15 sincossq 15521 . . . . . . . . 9 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
1615adantr 483 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
1714, 16eqtrd 2854 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) = 1)
18 ax-1ne0 10598 . . . . . . . 8 1 ≠ 0
1918a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 1 ≠ 0)
2017, 19eqnetrd 3081 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) ≠ 0)
2111, 13, 20subne0ad 11000 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ≠ -((cos‘𝐴)↑2))
2212mulm1d 11084 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (-1 · ((cos‘𝐴)↑2)) = -((cos‘𝐴)↑2))
2321, 22neeqtrrd 3088 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ≠ (-1 · ((cos‘𝐴)↑2)))
24 neg1cn 11743 . . . . . . 7 -1 ∈ ℂ
2524a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -1 ∈ ℂ)
26 sqne0 13481 . . . . . . . 8 ((cos‘𝐴) ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0))
276, 26syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0))
2827biimpar 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ≠ 0)
2911, 25, 12, 28divmul3d 11442 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) = -1 ↔ ((sin‘𝐴)↑2) = (-1 · ((cos‘𝐴)↑2))))
3029necon3bid 3058 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) ≠ -1 ↔ ((sin‘𝐴)↑2) ≠ (-1 · ((cos‘𝐴)↑2))))
3123, 30mpbird 259 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) ≠ -1)
3210, 31eqnetrd 3081 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) ≠ -1)
33 atandm3 25448 . 2 ((tan‘𝐴) ∈ dom arctan ↔ ((tan‘𝐴) ∈ ℂ ∧ ((tan‘𝐴)↑2) ≠ -1))
341, 32, 33sylanbrc 585 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wne 3014  dom cdm 5548  cfv 6348  (class class class)co 7148  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862  -cneg 10863   / cdiv 11289  2c2 11684  cexp 13421  sincsin 15409  cosccos 15410  tanctan 15411  arctancatan 25434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-atan 25437
This theorem is referenced by:  atantan  25493
  Copyright terms: Public domain W3C validator