MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogaddlem Structured version   Visualization version   GIF version

Theorem atanlogaddlem 24357
Description: Lemma for atanlogadd 24358. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
atanlogaddlem ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)

Proof of Theorem atanlogaddlem
StepHypRef Expression
1 0re 9896 . . . 4 0 ∈ ℝ
2 atandm2 24321 . . . . . 6 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
32simp1bi 1068 . . . . 5 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
43recld 13728 . . . 4 (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ)
5 leloe 9975 . . . 4 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 ≤ (ℜ‘𝐴) ↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))))
61, 4, 5sylancr 693 . . 3 (𝐴 ∈ dom arctan → (0 ≤ (ℜ‘𝐴) ↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))))
76biimpa 499 . 2 ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴)))
8 ax-1cn 9850 . . . . . . . 8 1 ∈ ℂ
9 ax-icn 9851 . . . . . . . . 9 i ∈ ℂ
10 mulcl 9876 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
119, 3, 10sylancr 693 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
12 addcl 9874 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
138, 11, 12sylancr 693 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
142simp3bi 1070 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
1513, 14logcld 24038 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
16 subcl 10131 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
178, 11, 16sylancr 693 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
182simp2bi 1069 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1917, 18logcld 24038 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2015, 19addcld 9915 . . . . 5 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ)
2120adantr 479 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ)
22 pire 23931 . . . . . . . 8 π ∈ ℝ
2322renegcli 10193 . . . . . . 7 -π ∈ ℝ
2423a1i 11 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ∈ ℝ)
2519adantr 479 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2625imcld 13729 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ ℝ)
2715adantr 479 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
2827imcld 13729 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℝ)
2928, 26readdcld 9925 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) ∈ ℝ)
3017adantr 479 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ∈ ℂ)
31 im1 13689 . . . . . . . . . . . . 13 (ℑ‘1) = 0
3231oveq1i 6537 . . . . . . . . . . . 12 ((ℑ‘1) − (ℑ‘(i · 𝐴))) = (0 − (ℑ‘(i · 𝐴)))
33 df-neg 10120 . . . . . . . . . . . 12 -(ℑ‘(i · 𝐴)) = (0 − (ℑ‘(i · 𝐴)))
3432, 33eqtr4i 2634 . . . . . . . . . . 11 ((ℑ‘1) − (ℑ‘(i · 𝐴))) = -(ℑ‘(i · 𝐴))
3511adantr 479 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
36 imsub 13669 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
378, 35, 36sylancr 693 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
383adantr 479 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
39 reim 13643 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
4038, 39syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
4140negeqd 10126 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℜ‘𝐴) = -(ℑ‘(i · 𝐴)))
4234, 37, 413eqtr4a 2669 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴))
434lt0neg2d 10447 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (0 < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < 0))
4443biimpa 499 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℜ‘𝐴) < 0)
4542, 44eqbrtrd 4599 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) < 0)
46 argimlt0 24080 . . . . . . . . 9 (((1 − (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) < 0) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0))
4730, 45, 46syl2anc 690 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0))
48 eliooord 12060 . . . . . . . 8 ((ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0) → (-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1 − (i · 𝐴)))) < 0))
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1 − (i · 𝐴)))) < 0))
5049simpld 473 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘(1 − (i · 𝐴)))))
5113adantr 479 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ∈ ℂ)
52 simpr 475 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
53 imadd 13668 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
548, 35, 53sylancr 693 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
5540oveq2d 6543 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘1) + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
5631oveq1i 6537 . . . . . . . . . . . . 13 ((ℑ‘1) + (ℜ‘𝐴)) = (0 + (ℜ‘𝐴))
5738recld 13728 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
5857recnd 9924 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℂ)
5958addid2d 10088 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 + (ℜ‘𝐴)) = (ℜ‘𝐴))
6056, 59syl5eq 2655 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘1) + (ℜ‘𝐴)) = (ℜ‘𝐴))
6154, 55, 603eqtr2d 2649 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴))
6252, 61breqtrrd 4605 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(1 + (i · 𝐴))))
63 argimgt0 24079 . . . . . . . . . 10 (((1 + (i · 𝐴)) ∈ ℂ ∧ 0 < (ℑ‘(1 + (i · 𝐴)))) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π))
6451, 62, 63syl2anc 690 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π))
65 eliooord 12060 . . . . . . . . 9 ((ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i · 𝐴)))) < π))
6664, 65syl 17 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i · 𝐴)))) < π))
6766simpld 473 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(log‘(1 + (i · 𝐴)))))
6828, 26ltaddpos2d 10461 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ↔ (ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴)))))))
6967, 68mpbid 220 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7024, 26, 29, 50, 69lttrd 10049 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7127, 25imaddd 13749 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7270, 71breqtrrd 4605 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))))
7322a1i 11 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → π ∈ ℝ)
74 0red 9897 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
7549simprd 477 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) < 0)
7626, 74, 28, 75ltadd2dd 10047 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + 0))
7728recnd 9924 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℂ)
7877addid1d 10087 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + 0) = (ℑ‘(log‘(1 + (i · 𝐴)))))
7976, 78breqtrd 4603 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < (ℑ‘(log‘(1 + (i · 𝐴)))))
8066simprd 477 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) < π)
8129, 28, 73, 79, 80lttrd 10049 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < π)
8229, 73, 81ltled 10036 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) ≤ π)
8371, 82eqbrtrd 4599 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ≤ π)
84 ellogrn 24027 . . . 4 (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log ↔ (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ ∧ -π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ≤ π))
8521, 72, 83, 84syl3anbrc 1238 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
86 0red 9897 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 0 ∈ ℝ)
8711adantr 479 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
88 simpr 475 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 0 = (ℜ‘𝐴))
893adantr 479 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
9089, 39syl 17 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
9188, 90eqtr2d 2644 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (ℑ‘(i · 𝐴)) = 0)
9287, 91reim0bd 13734 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (i · 𝐴) ∈ ℝ)
9315, 19addcomd 10089 . . . . . 6 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
9493ad2antrr 757 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
95 logrncl 24035 . . . . . . . 8 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (log‘(1 − (i · 𝐴))) ∈ ran log)
9617, 18, 95syl2anc 690 . . . . . . 7 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ran log)
9796ad2antrr 757 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ran log)
98 1re 9895 . . . . . . . . 9 1 ∈ ℝ
9992adantr 479 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (i · 𝐴) ∈ ℝ)
100 readdcl 9875 . . . . . . . . 9 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 + (i · 𝐴)) ∈ ℝ)
10198, 99, 100sylancr 693 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (1 + (i · 𝐴)) ∈ ℝ)
102 0red 9897 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 ∈ ℝ)
103 1red 9911 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 1 ∈ ℝ)
104 0lt1 10399 . . . . . . . . . 10 0 < 1
105104a1i 11 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 < 1)
106 addge01 10387 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (0 ≤ (i · 𝐴) ↔ 1 ≤ (1 + (i · 𝐴))))
10798, 92, 106sylancr 693 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (0 ≤ (i · 𝐴) ↔ 1 ≤ (1 + (i · 𝐴))))
108107biimpa 499 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 1 ≤ (1 + (i · 𝐴)))
109102, 103, 101, 105, 108ltletrd 10048 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 < (1 + (i · 𝐴)))
110101, 109elrpd 11701 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (1 + (i · 𝐴)) ∈ ℝ+)
111110relogcld 24090 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℝ)
112 logrnaddcl 24042 . . . . . 6 (((log‘(1 − (i · 𝐴))) ∈ ran log ∧ (log‘(1 + (i · 𝐴))) ∈ ℝ) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran log)
11397, 111, 112syl2anc 690 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran log)
11494, 113eqeltrd 2687 . . . 4 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
115 logrncl 24035 . . . . . . 7 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log)
11613, 14, 115syl2anc 690 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ran log)
117116ad2antrr 757 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log)
11892adantr 479 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (i · 𝐴) ∈ ℝ)
119 resubcl 10196 . . . . . . . 8 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 − (i · 𝐴)) ∈ ℝ)
12098, 118, 119sylancr 693 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − (i · 𝐴)) ∈ ℝ)
121 0red 9897 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 ∈ ℝ)
122 1red 9911 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 1 ∈ ℝ)
123104a1i 11 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 < 1)
124 1m0e1 10978 . . . . . . . . 9 (1 − 0) = 1
125 1red 9911 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 1 ∈ ℝ)
12692, 86, 125lesub2d 10484 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → ((i · 𝐴) ≤ 0 ↔ (1 − 0) ≤ (1 − (i · 𝐴))))
127126biimpa 499 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − 0) ≤ (1 − (i · 𝐴)))
128124, 127syl5eqbrr 4613 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 1 ≤ (1 − (i · 𝐴)))
129121, 122, 120, 123, 128ltletrd 10048 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 < (1 − (i · 𝐴)))
130120, 129elrpd 11701 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − (i · 𝐴)) ∈ ℝ+)
131130relogcld 24090 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (log‘(1 − (i · 𝐴))) ∈ ℝ)
132 logrnaddcl 24042 . . . . 5 (((log‘(1 + (i · 𝐴))) ∈ ran log ∧ (log‘(1 − (i · 𝐴))) ∈ ℝ) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
133117, 131, 132syl2anc 690 . . . 4 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
13486, 92, 114, 133lecasei 9994 . . 3 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
13585, 134jaodan 821 . 2 ((𝐴 ∈ dom arctan ∧ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
1367, 135syldan 485 1 ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577  dom cdm 5028  ran crn 5029  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793  ici 9794   + caddc 9795   · cmul 9797   < clt 9930  cle 9931  cmin 10117  -cneg 10118  (,)cioo 12002  cre 13631  cim 13632  πcpi 14582  logclog 24022  arctancatan 24308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024  df-atan 24311
This theorem is referenced by:  atanlogadd  24358
  Copyright terms: Public domain W3C validator