MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogaddlem Structured version   Visualization version   GIF version

Theorem atanlogaddlem 25493
Description: Lemma for atanlogadd 25494. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
atanlogaddlem ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)

Proof of Theorem atanlogaddlem
StepHypRef Expression
1 0re 10645 . . . 4 0 ∈ ℝ
2 atandm2 25457 . . . . . 6 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
32simp1bi 1141 . . . . 5 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
43recld 14555 . . . 4 (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ)
5 leloe 10729 . . . 4 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 ≤ (ℜ‘𝐴) ↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))))
61, 4, 5sylancr 589 . . 3 (𝐴 ∈ dom arctan → (0 ≤ (ℜ‘𝐴) ↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))))
76biimpa 479 . 2 ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴)))
8 ax-1cn 10597 . . . . . . . 8 1 ∈ ℂ
9 ax-icn 10598 . . . . . . . . 9 i ∈ ℂ
10 mulcl 10623 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
119, 3, 10sylancr 589 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
12 addcl 10621 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
138, 11, 12sylancr 589 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
142simp3bi 1143 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
1513, 14logcld 25156 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
16 subcl 10887 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
178, 11, 16sylancr 589 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
182simp2bi 1142 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1917, 18logcld 25156 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2015, 19addcld 10662 . . . . 5 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ)
2120adantr 483 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ)
22 pire 25046 . . . . . . . 8 π ∈ ℝ
2322renegcli 10949 . . . . . . 7 -π ∈ ℝ
2423a1i 11 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ∈ ℝ)
2519adantr 483 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2625imcld 14556 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ ℝ)
2715adantr 483 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
2827imcld 14556 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℝ)
2928, 26readdcld 10672 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) ∈ ℝ)
3017adantr 483 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ∈ ℂ)
31 im1 14516 . . . . . . . . . . . . 13 (ℑ‘1) = 0
3231oveq1i 7168 . . . . . . . . . . . 12 ((ℑ‘1) − (ℑ‘(i · 𝐴))) = (0 − (ℑ‘(i · 𝐴)))
33 df-neg 10875 . . . . . . . . . . . 12 -(ℑ‘(i · 𝐴)) = (0 − (ℑ‘(i · 𝐴)))
3432, 33eqtr4i 2849 . . . . . . . . . . 11 ((ℑ‘1) − (ℑ‘(i · 𝐴))) = -(ℑ‘(i · 𝐴))
3511adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
36 imsub 14496 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
378, 35, 36sylancr 589 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
383adantr 483 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
39 reim 14470 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
4038, 39syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
4140negeqd 10882 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℜ‘𝐴) = -(ℑ‘(i · 𝐴)))
4234, 37, 413eqtr4a 2884 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴))
434lt0neg2d 11212 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (0 < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < 0))
4443biimpa 479 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℜ‘𝐴) < 0)
4542, 44eqbrtrd 5090 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) < 0)
46 argimlt0 25198 . . . . . . . . 9 (((1 − (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) < 0) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0))
4730, 45, 46syl2anc 586 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0))
48 eliooord 12799 . . . . . . . 8 ((ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0) → (-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1 − (i · 𝐴)))) < 0))
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1 − (i · 𝐴)))) < 0))
5049simpld 497 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘(1 − (i · 𝐴)))))
5113adantr 483 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ∈ ℂ)
52 simpr 487 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
53 imadd 14495 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
548, 35, 53sylancr 589 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
5540oveq2d 7174 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘1) + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
5631oveq1i 7168 . . . . . . . . . . . . 13 ((ℑ‘1) + (ℜ‘𝐴)) = (0 + (ℜ‘𝐴))
5738recld 14555 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
5857recnd 10671 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℂ)
5958addid2d 10843 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 + (ℜ‘𝐴)) = (ℜ‘𝐴))
6056, 59syl5eq 2870 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘1) + (ℜ‘𝐴)) = (ℜ‘𝐴))
6154, 55, 603eqtr2d 2864 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴))
6252, 61breqtrrd 5096 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(1 + (i · 𝐴))))
63 argimgt0 25197 . . . . . . . . . 10 (((1 + (i · 𝐴)) ∈ ℂ ∧ 0 < (ℑ‘(1 + (i · 𝐴)))) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π))
6451, 62, 63syl2anc 586 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π))
65 eliooord 12799 . . . . . . . . 9 ((ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i · 𝐴)))) < π))
6664, 65syl 17 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i · 𝐴)))) < π))
6766simpld 497 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(log‘(1 + (i · 𝐴)))))
6828, 26ltaddpos2d 11227 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ↔ (ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴)))))))
6967, 68mpbid 234 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7024, 26, 29, 50, 69lttrd 10803 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7127, 25imaddd 14576 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7270, 71breqtrrd 5096 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))))
7322a1i 11 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → π ∈ ℝ)
74 0red 10646 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
7549simprd 498 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) < 0)
7626, 74, 28, 75ltadd2dd 10801 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + 0))
7728recnd 10671 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℂ)
7877addid1d 10842 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + 0) = (ℑ‘(log‘(1 + (i · 𝐴)))))
7976, 78breqtrd 5094 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < (ℑ‘(log‘(1 + (i · 𝐴)))))
8066simprd 498 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) < π)
8129, 28, 73, 79, 80lttrd 10803 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < π)
8229, 73, 81ltled 10790 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) ≤ π)
8371, 82eqbrtrd 5090 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ≤ π)
84 ellogrn 25145 . . . 4 (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log ↔ (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ ∧ -π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ≤ π))
8521, 72, 83, 84syl3anbrc 1339 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
86 0red 10646 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 0 ∈ ℝ)
8711adantr 483 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
88 simpr 487 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 0 = (ℜ‘𝐴))
893adantr 483 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
9089, 39syl 17 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
9188, 90eqtr2d 2859 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (ℑ‘(i · 𝐴)) = 0)
9287, 91reim0bd 14561 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (i · 𝐴) ∈ ℝ)
9315, 19addcomd 10844 . . . . . 6 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
9493ad2antrr 724 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
95 logrncl 25153 . . . . . . . 8 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (log‘(1 − (i · 𝐴))) ∈ ran log)
9617, 18, 95syl2anc 586 . . . . . . 7 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ran log)
9796ad2antrr 724 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ran log)
98 1re 10643 . . . . . . . . 9 1 ∈ ℝ
9992adantr 483 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (i · 𝐴) ∈ ℝ)
100 readdcl 10622 . . . . . . . . 9 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 + (i · 𝐴)) ∈ ℝ)
10198, 99, 100sylancr 589 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (1 + (i · 𝐴)) ∈ ℝ)
102 0red 10646 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 ∈ ℝ)
103 1red 10644 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 1 ∈ ℝ)
104 0lt1 11164 . . . . . . . . . 10 0 < 1
105104a1i 11 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 < 1)
106 addge01 11152 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (0 ≤ (i · 𝐴) ↔ 1 ≤ (1 + (i · 𝐴))))
10798, 92, 106sylancr 589 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (0 ≤ (i · 𝐴) ↔ 1 ≤ (1 + (i · 𝐴))))
108107biimpa 479 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 1 ≤ (1 + (i · 𝐴)))
109102, 103, 101, 105, 108ltletrd 10802 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 < (1 + (i · 𝐴)))
110101, 109elrpd 12431 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (1 + (i · 𝐴)) ∈ ℝ+)
111110relogcld 25208 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℝ)
112 logrnaddcl 25160 . . . . . 6 (((log‘(1 − (i · 𝐴))) ∈ ran log ∧ (log‘(1 + (i · 𝐴))) ∈ ℝ) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran log)
11397, 111, 112syl2anc 586 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran log)
11494, 113eqeltrd 2915 . . . 4 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
115 logrncl 25153 . . . . . . 7 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log)
11613, 14, 115syl2anc 586 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ran log)
117116ad2antrr 724 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log)
11892adantr 483 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (i · 𝐴) ∈ ℝ)
119 resubcl 10952 . . . . . . . 8 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 − (i · 𝐴)) ∈ ℝ)
12098, 118, 119sylancr 589 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − (i · 𝐴)) ∈ ℝ)
121 0red 10646 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 ∈ ℝ)
122 1red 10644 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 1 ∈ ℝ)
123104a1i 11 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 < 1)
124 1m0e1 11761 . . . . . . . . 9 (1 − 0) = 1
125 1red 10644 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 1 ∈ ℝ)
12692, 86, 125lesub2d 11250 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → ((i · 𝐴) ≤ 0 ↔ (1 − 0) ≤ (1 − (i · 𝐴))))
127126biimpa 479 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − 0) ≤ (1 − (i · 𝐴)))
128124, 127eqbrtrrid 5104 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 1 ≤ (1 − (i · 𝐴)))
129121, 122, 120, 123, 128ltletrd 10802 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 < (1 − (i · 𝐴)))
130120, 129elrpd 12431 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − (i · 𝐴)) ∈ ℝ+)
131130relogcld 25208 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (log‘(1 − (i · 𝐴))) ∈ ℝ)
132 logrnaddcl 25160 . . . . 5 (((log‘(1 + (i · 𝐴))) ∈ ran log ∧ (log‘(1 − (i · 𝐴))) ∈ ℝ) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
133117, 131, 132syl2anc 586 . . . 4 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
13486, 92, 114, 133lecasei 10748 . . 3 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
13585, 134jaodan 954 . 2 ((𝐴 ∈ dom arctan ∧ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
1367, 135syldan 593 1 ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  dom cdm 5557  ran crn 5558  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  -cneg 10873  (,)cioo 12741  cre 14458  cim 14459  πcpi 15422  logclog 25140  arctancatan 25444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-atan 25447
This theorem is referenced by:  atanlogadd  25494
  Copyright terms: Public domain W3C validator