MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanneg Structured version   Visualization version   GIF version

Theorem atanneg 24568
Description: The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
atanneg (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴))

Proof of Theorem atanneg
StepHypRef Expression
1 ax-icn 9955 . . . . . . . . . 10 i ∈ ℂ
2 atandm2 24538 . . . . . . . . . . 11 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
32simp1bi 1074 . . . . . . . . . 10 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
4 mulneg2 10427 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
51, 3, 4sylancr 694 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · -𝐴) = -(i · 𝐴))
65oveq2d 6631 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 − -(i · 𝐴)))
7 ax-1cn 9954 . . . . . . . . 9 1 ∈ ℂ
8 mulcl 9980 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
91, 3, 8sylancr 694 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
10 subneg 10290 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
117, 9, 10sylancr 694 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 − -(i · 𝐴)) = (1 + (i · 𝐴)))
126, 11eqtrd 2655 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · -𝐴)) = (1 + (i · 𝐴)))
1312fveq2d 6162 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · -𝐴))) = (log‘(1 + (i · 𝐴))))
145oveq2d 6631 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 + -(i · 𝐴)))
15 negsub 10289 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
167, 9, 15sylancr 694 . . . . . . . 8 (𝐴 ∈ dom arctan → (1 + -(i · 𝐴)) = (1 − (i · 𝐴)))
1714, 16eqtrd 2655 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · -𝐴)) = (1 − (i · 𝐴)))
1817fveq2d 6162 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · -𝐴))) = (log‘(1 − (i · 𝐴))))
1913, 18oveq12d 6633 . . . . 5 (𝐴 ∈ dom arctan → ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
20 subcl 10240 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
217, 9, 20sylancr 694 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
222simp2bi 1075 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
2321, 22logcld 24255 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
24 addcl 9978 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
257, 9, 24sylancr 694 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
262simp3bi 1076 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
2725, 26logcld 24255 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
2823, 27negsubdi2d 10368 . . . . 5 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
2919, 28eqtr4d 2658 . . . 4 (𝐴 ∈ dom arctan → ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴)))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
3029oveq2d 6631 . . 3 (𝐴 ∈ dom arctan → ((i / 2) · ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴))))) = ((i / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
31 halfcl 11217 . . . . 5 (i ∈ ℂ → (i / 2) ∈ ℂ)
321, 31ax-mp 5 . . . 4 (i / 2) ∈ ℂ
3323, 27subcld 10352 . . . 4 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
34 mulneg2 10427 . . . 4 (((i / 2) ∈ ℂ ∧ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ) → ((i / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3532, 33, 34sylancr 694 . . 3 (𝐴 ∈ dom arctan → ((i / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3630, 35eqtrd 2655 . 2 (𝐴 ∈ dom arctan → ((i / 2) · ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴))))) = -((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
37 atandmneg 24567 . . 3 (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan)
38 atanval 24545 . . 3 (-𝐴 ∈ dom arctan → (arctan‘-𝐴) = ((i / 2) · ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴))))))
3937, 38syl 17 . 2 (𝐴 ∈ dom arctan → (arctan‘-𝐴) = ((i / 2) · ((log‘(1 − (i · -𝐴))) − (log‘(1 + (i · -𝐴))))))
40 atanval 24545 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4140negeqd 10235 . 2 (𝐴 ∈ dom arctan → -(arctan‘𝐴) = -((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
4236, 39, 413eqtr4d 2665 1 (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wne 2790  dom cdm 5084  cfv 5857  (class class class)co 6615  cc 9894  0cc0 9896  1c1 9897  ici 9898   + caddc 9899   · cmul 9901  cmin 10226  -cneg 10227   / cdiv 10644  2c2 11030  logclog 24239  arctancatan 24525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ioc 12138  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-fac 13017  df-bc 13046  df-hash 13074  df-shft 13757  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367  df-ef 14742  df-sin 14744  df-cos 14745  df-pi 14747  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cncf 22621  df-limc 23570  df-dv 23571  df-log 24241  df-atan 24528
This theorem is referenced by:  atan0  24569  cosatan  24582  atanbnd  24587
  Copyright terms: Public domain W3C validator