MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl2 Structured version   Visualization version   GIF version

Theorem atantayl2 24582
Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl2.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))))
Assertion
Ref Expression
atantayl2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl2
StepHypRef Expression
1 atantayl2.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))))
2 ax-icn 9947 . . . . . . . . . . . . . . . 16 i ∈ ℂ
32negcli 10301 . . . . . . . . . . . . . . 15 -i ∈ ℂ
43a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → -i ∈ ℂ)
5 nnnn0 11251 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
65ad2antlr 762 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ∈ ℕ0)
74, 6expcld 12956 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑𝑛) ∈ ℂ)
8 sqneg 12871 . . . . . . . . . . . . . . . . 17 (i ∈ ℂ → (-i↑2) = (i↑2))
92, 8ax-mp 5 . . . . . . . . . . . . . . . 16 (-i↑2) = (i↑2)
109oveq1i 6620 . . . . . . . . . . . . . . 15 ((-i↑2)↑(𝑛 / 2)) = ((i↑2)↑(𝑛 / 2))
11 ine0 10417 . . . . . . . . . . . . . . . . . 18 i ≠ 0
122, 11negne0i 10308 . . . . . . . . . . . . . . . . 17 -i ≠ 0
1312a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → -i ≠ 0)
14 2z 11361 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
1514a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ∈ ℤ)
1614a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 2 ∈ ℤ)
17 2ne0 11065 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
1817a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 2 ≠ 0)
19 nnz 11351 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
2019adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
21 dvdsval2 14921 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑛 ∈ ℤ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℤ))
2216, 18, 20, 21syl3anc 1323 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℤ))
2322biimpa 501 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (𝑛 / 2) ∈ ℤ)
24 expmulz 12854 . . . . . . . . . . . . . . . 16 (((-i ∈ ℂ ∧ -i ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑛 / 2) ∈ ℤ)) → (-i↑(2 · (𝑛 / 2))) = ((-i↑2)↑(𝑛 / 2)))
254, 13, 15, 23, 24syl22anc 1324 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = ((-i↑2)↑(𝑛 / 2)))
262a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → i ∈ ℂ)
2711a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → i ≠ 0)
28 expmulz 12854 . . . . . . . . . . . . . . . 16 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑛 / 2) ∈ ℤ)) → (i↑(2 · (𝑛 / 2))) = ((i↑2)↑(𝑛 / 2)))
2926, 27, 15, 23, 28syl22anc 1324 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i↑(2 · (𝑛 / 2))) = ((i↑2)↑(𝑛 / 2)))
3010, 25, 293eqtr4a 2681 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = (i↑(2 · (𝑛 / 2))))
31 nncn 10980 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3231ad2antlr 762 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ∈ ℂ)
33 2cnd 11045 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ∈ ℂ)
3417a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ≠ 0)
3532, 33, 34divcan2d 10755 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (2 · (𝑛 / 2)) = 𝑛)
3635oveq2d 6626 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = (-i↑𝑛))
3735oveq2d 6626 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i↑(2 · (𝑛 / 2))) = (i↑𝑛))
3830, 36, 373eqtr3d 2663 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑𝑛) = (i↑𝑛))
397, 38subeq0bd 10408 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((-i↑𝑛) − (i↑𝑛)) = 0)
4039oveq2d 6626 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = (i · 0))
41 it0e0 11206 . . . . . . . . . . 11 (i · 0) = 0
4240, 41syl6eq 2671 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = 0)
4342oveq1d 6625 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = (0 / 2))
44 2cn 11043 . . . . . . . . . 10 2 ∈ ℂ
4544, 17div0i 10711 . . . . . . . . 9 (0 / 2) = 0
4643, 45syl6eq 2671 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = 0)
4746oveq1d 6625 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)) = (0 · ((𝐴𝑛) / 𝑛)))
48 simplll 797 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝐴 ∈ ℂ)
4948, 6expcld 12956 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (𝐴𝑛) ∈ ℂ)
50 nnne0 11005 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5150ad2antlr 762 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ≠ 0)
5249, 32, 51divcld 10753 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((𝐴𝑛) / 𝑛) ∈ ℂ)
5352mul02d 10186 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (0 · ((𝐴𝑛) / 𝑛)) = 0)
5447, 53eqtr2d 2656 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
55 2cnd 11045 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ∈ ℂ)
56 ax-1cn 9946 . . . . . . . . . . 11 1 ∈ ℂ
5756negcli 10301 . . . . . . . . . 10 -1 ∈ ℂ
5857a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -1 ∈ ℂ)
59 neg1ne0 11078 . . . . . . . . . 10 -1 ≠ 0
6059a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -1 ≠ 0)
6131ad2antlr 762 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℂ)
62 peano2cn 10160 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
6361, 62syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (𝑛 + 1) ∈ ℂ)
6417a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ≠ 0)
6563, 55, 55, 64divsubdird 10792 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = (((𝑛 + 1) / 2) − (2 / 2)))
66 2div2e1 11102 . . . . . . . . . . . . 13 (2 / 2) = 1
6766oveq2i 6621 . . . . . . . . . . . 12 (((𝑛 + 1) / 2) − (2 / 2)) = (((𝑛 + 1) / 2) − 1)
6865, 67syl6eq 2671 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = (((𝑛 + 1) / 2) − 1))
69 df-2 11031 . . . . . . . . . . . . . 14 2 = (1 + 1)
7069oveq2i 6621 . . . . . . . . . . . . 13 ((𝑛 + 1) − 2) = ((𝑛 + 1) − (1 + 1))
7156a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 1 ∈ ℂ)
7261, 71, 71pnpcan2d 10382 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) − (1 + 1)) = (𝑛 − 1))
7370, 72syl5eq 2667 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) − 2) = (𝑛 − 1))
7473oveq1d 6625 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = ((𝑛 − 1) / 2))
7568, 74eqtr3d 2657 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) / 2) − 1) = ((𝑛 − 1) / 2))
7622notbid 308 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 ↔ ¬ (𝑛 / 2) ∈ ℤ))
77 zeo 11415 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
7820, 77syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
7978ord 392 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ (𝑛 / 2) ∈ ℤ → ((𝑛 + 1) / 2) ∈ ℤ))
8076, 79sylbid 230 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 → ((𝑛 + 1) / 2) ∈ ℤ))
8180imp 445 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) / 2) ∈ ℤ)
82 peano2zm 11372 . . . . . . . . . . 11 (((𝑛 + 1) / 2) ∈ ℤ → (((𝑛 + 1) / 2) − 1) ∈ ℤ)
8381, 82syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) / 2) − 1) ∈ ℤ)
8475, 83eqeltrrd 2699 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 − 1) / 2) ∈ ℤ)
8558, 60, 84expclzd 12961 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) ∈ ℂ)
86852timesd 11227 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · (-1↑((𝑛 − 1) / 2))) = ((-1↑((𝑛 − 1) / 2)) + (-1↑((𝑛 − 1) / 2))))
87 subcl 10232 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
8861, 56, 87sylancl 693 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (𝑛 − 1) ∈ ℂ)
8988, 55, 64divcan2d 10755 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · ((𝑛 − 1) / 2)) = (𝑛 − 1))
9089oveq2d 6626 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = (-i↑(𝑛 − 1)))
913a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -i ∈ ℂ)
9212a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -i ≠ 0)
9319ad2antlr 762 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℤ)
9491, 92, 93expm1d 12966 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(𝑛 − 1)) = ((-i↑𝑛) / -i))
9590, 94eqtrd 2655 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑𝑛) / -i))
9614a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ∈ ℤ)
97 expmulz 12854 . . . . . . . . . . . . 13 (((-i ∈ ℂ ∧ -i ≠ 0) ∧ (2 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℤ)) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑2)↑((𝑛 − 1) / 2)))
9891, 92, 96, 84, 97syl22anc 1324 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑2)↑((𝑛 − 1) / 2)))
995ad2antlr 762 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℕ0)
100 expcl 12826 . . . . . . . . . . . . . 14 ((-i ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-i↑𝑛) ∈ ℂ)
1013, 99, 100sylancr 694 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑𝑛) ∈ ℂ)
102101, 91, 92divrec2d 10757 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-i↑𝑛) / -i) = ((1 / -i) · (-i↑𝑛)))
10395, 98, 1023eqtr3d 2663 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-i↑2)↑((𝑛 − 1) / 2)) = ((1 / -i) · (-i↑𝑛)))
104 i2 12913 . . . . . . . . . . . . 13 (i↑2) = -1
1059, 104eqtri 2643 . . . . . . . . . . . 12 (-i↑2) = -1
106105oveq1i 6620 . . . . . . . . . . 11 ((-i↑2)↑((𝑛 − 1) / 2)) = (-1↑((𝑛 − 1) / 2))
107 irec 12912 . . . . . . . . . . . . . 14 (1 / i) = -i
108107negeqi 10226 . . . . . . . . . . . . 13 -(1 / i) = --i
109 divneg2 10701 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → -(1 / i) = (1 / -i))
11056, 2, 11, 109mp3an 1421 . . . . . . . . . . . . 13 -(1 / i) = (1 / -i)
1112negnegi 10303 . . . . . . . . . . . . 13 --i = i
112108, 110, 1113eqtr3i 2651 . . . . . . . . . . . 12 (1 / -i) = i
113112oveq1i 6620 . . . . . . . . . . 11 ((1 / -i) · (-i↑𝑛)) = (i · (-i↑𝑛))
114103, 106, 1133eqtr3g 2678 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = (i · (-i↑𝑛)))
11589oveq2d 6626 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = (i↑(𝑛 − 1)))
1162a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → i ∈ ℂ)
11711a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → i ≠ 0)
118116, 117, 93expm1d 12966 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(𝑛 − 1)) = ((i↑𝑛) / i))
119115, 118eqtrd 2655 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑𝑛) / i))
120 expmulz 12854 . . . . . . . . . . . . . 14 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℤ)) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑2)↑((𝑛 − 1) / 2)))
121116, 117, 96, 84, 120syl22anc 1324 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑2)↑((𝑛 − 1) / 2)))
122 expcl 12826 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (i↑𝑛) ∈ ℂ)
1232, 99, 122sylancr 694 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑𝑛) ∈ ℂ)
124123, 116, 117divrec2d 10757 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i↑𝑛) / i) = ((1 / i) · (i↑𝑛)))
125119, 121, 1243eqtr3d 2663 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i↑2)↑((𝑛 − 1) / 2)) = ((1 / i) · (i↑𝑛)))
126104oveq1i 6620 . . . . . . . . . . . 12 ((i↑2)↑((𝑛 − 1) / 2)) = (-1↑((𝑛 − 1) / 2))
127107oveq1i 6620 . . . . . . . . . . . 12 ((1 / i) · (i↑𝑛)) = (-i · (i↑𝑛))
128125, 126, 1273eqtr3g 2678 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = (-i · (i↑𝑛)))
129 mulneg1 10418 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (i↑𝑛) ∈ ℂ) → (-i · (i↑𝑛)) = -(i · (i↑𝑛)))
1302, 123, 129sylancr 694 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i · (i↑𝑛)) = -(i · (i↑𝑛)))
131128, 130eqtrd 2655 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = -(i · (i↑𝑛)))
132114, 131oveq12d 6628 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-1↑((𝑛 − 1) / 2)) + (-1↑((𝑛 − 1) / 2))) = ((i · (-i↑𝑛)) + -(i · (i↑𝑛))))
133 mulcl 9972 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (-i↑𝑛) ∈ ℂ) → (i · (-i↑𝑛)) ∈ ℂ)
1342, 101, 133sylancr 694 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · (-i↑𝑛)) ∈ ℂ)
135 mulcl 9972 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (i↑𝑛) ∈ ℂ) → (i · (i↑𝑛)) ∈ ℂ)
1362, 123, 135sylancr 694 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · (i↑𝑛)) ∈ ℂ)
137134, 136negsubd 10350 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i · (-i↑𝑛)) + -(i · (i↑𝑛))) = ((i · (-i↑𝑛)) − (i · (i↑𝑛))))
138116, 101, 123subdid 10438 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = ((i · (-i↑𝑛)) − (i · (i↑𝑛))))
139137, 138eqtr4d 2658 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i · (-i↑𝑛)) + -(i · (i↑𝑛))) = (i · ((-i↑𝑛) − (i↑𝑛))))
14086, 132, 1393eqtrd 2659 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · (-1↑((𝑛 − 1) / 2))) = (i · ((-i↑𝑛) − (i↑𝑛))))
14155, 85, 64, 140mvllmuld 10809 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = ((i · ((-i↑𝑛) − (i↑𝑛))) / 2))
142141oveq1d 6625 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛)) = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
14354, 142ifeqda 4098 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))) = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
144143mpteq2dva 4709 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))))
1451, 144syl5eq 2667 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))))
146145seqeq3d 12757 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) = seq1( + , (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))))
147 eqid 2621 . . 3 (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))) = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
148147atantayl 24581 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))) ⇝ (arctan‘𝐴))
149146, 148eqbrtrd 4640 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  ifcif 4063   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cc 9886  0cc0 9888  1c1 9889  ici 9890   + caddc 9891   · cmul 9893   < clt 10026  cmin 10218  -cneg 10219   / cdiv 10636  cn 10972  2c2 11022  0cn0 11244  cz 11329  seqcseq 12749  cexp 12808  abscabs 13916  cli 14157  cdvds 14918  arctancatan 24508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-sin 14736  df-cos 14737  df-tan 14738  df-pi 14739  df-dvds 14919  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-cmp 21113  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554  df-ulm 24052  df-log 24224  df-atan 24511
This theorem is referenced by:  atantayl3  24583  leibpi  24586
  Copyright terms: Public domain W3C validator