HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcvat4i Structured version   Visualization version   GIF version

Theorem atcvat4i 29384
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atcvat3.1 𝐴C
Assertion
Ref Expression
atcvat4i ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem atcvat4i
StepHypRef Expression
1 atcvat3.1 . . . . . . . . 9 𝐴C
21hatomici 29346 . . . . . . . 8 (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms 𝑥𝐴)
3 atelch 29331 . . . . . . . . . . . . . . 15 (𝐶 ∈ HAtoms → 𝐶C )
4 atelch 29331 . . . . . . . . . . . . . . 15 (𝑥 ∈ HAtoms → 𝑥C )
5 chub1 28494 . . . . . . . . . . . . . . 15 ((𝐶C𝑥C ) → 𝐶 ⊆ (𝐶 𝑥))
63, 4, 5syl2an 493 . . . . . . . . . . . . . 14 ((𝐶 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐶 ⊆ (𝐶 𝑥))
7 sseq1 3659 . . . . . . . . . . . . . 14 (𝐵 = 𝐶 → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐶 ⊆ (𝐶 𝑥)))
86, 7syl5ibr 236 . . . . . . . . . . . . 13 (𝐵 = 𝐶 → ((𝐶 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐵 ⊆ (𝐶 𝑥)))
98expd 451 . . . . . . . . . . . 12 (𝐵 = 𝐶 → (𝐶 ∈ HAtoms → (𝑥 ∈ HAtoms → 𝐵 ⊆ (𝐶 𝑥))))
109impcom 445 . . . . . . . . . . 11 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝑥 ∈ HAtoms → 𝐵 ⊆ (𝐶 𝑥)))
1110anim2d 588 . . . . . . . . . 10 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → ((𝑥𝐴𝑥 ∈ HAtoms) → (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
1211expcomd 453 . . . . . . . . 9 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝑥 ∈ HAtoms → (𝑥𝐴 → (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1312reximdvai 3044 . . . . . . . 8 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (∃𝑥 ∈ HAtoms 𝑥𝐴 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
142, 13syl5 34 . . . . . . 7 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
1514ex 449 . . . . . 6 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1615a1i 11 . . . . 5 (𝐵 ⊆ (𝐴 𝐶) → (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))))
1716com4l 92 . . . 4 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))))
1817imp4a 613 . . 3 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1918adantl 481 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵 = 𝐶 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
20 atelch 29331 . . . . . . . 8 (𝐵 ∈ HAtoms → 𝐵C )
21 chlejb2 28500 . . . . . . . . . . . . . . 15 ((𝐶C𝐴C ) → (𝐶𝐴 ↔ (𝐴 𝐶) = 𝐴))
221, 21mpan2 707 . . . . . . . . . . . . . 14 (𝐶C → (𝐶𝐴 ↔ (𝐴 𝐶) = 𝐴))
2322biimpa 500 . . . . . . . . . . . . 13 ((𝐶C𝐶𝐴) → (𝐴 𝐶) = 𝐴)
2423sseq2d 3666 . . . . . . . . . . . 12 ((𝐶C𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) ↔ 𝐵𝐴))
2524biimpa 500 . . . . . . . . . . 11 (((𝐶C𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴)
2625expl 647 . . . . . . . . . 10 (𝐶C → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴))
2726adantl 481 . . . . . . . . 9 ((𝐵C𝐶C ) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴))
28 chub2 28495 . . . . . . . . 9 ((𝐵C𝐶C ) → 𝐵 ⊆ (𝐶 𝐵))
2927, 28jctird 566 . . . . . . . 8 ((𝐵C𝐶C ) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
3020, 3, 29syl2an 493 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
31 simpl 472 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → 𝐵 ∈ HAtoms)
3230, 31jctild 565 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵)))))
3332impl 649 . . . . 5 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
34 sseq1 3659 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
35 oveq2 6698 . . . . . . . 8 (𝑥 = 𝐵 → (𝐶 𝑥) = (𝐶 𝐵))
3635sseq2d 3666 . . . . . . 7 (𝑥 = 𝐵 → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐵 ⊆ (𝐶 𝐵)))
3734, 36anbi12d 747 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝐴𝐵 ⊆ (𝐶 𝑥)) ↔ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
3837rspcev 3340 . . . . 5 ((𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
3933, 38syl 17 . . . 4 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
4039adantrl 752 . . 3 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ (𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
4140exp31 629 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐶𝐴 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
42 simpr 476 . . 3 ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → 𝐵 ⊆ (𝐴 𝐶))
43 ioran 510 . . . 4 (¬ (𝐵 = 𝐶𝐶𝐴) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴))
441atcvat3i 29383 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))
453ad2antlr 763 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐶C )
4644imp 444 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms)
47 simpll 805 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐵 ∈ HAtoms)
4845, 46, 473jca 1261 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
49 inss2 3867 . . . . . . . . . . . . 13 (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐵 𝐶)
50 chjcom 28493 . . . . . . . . . . . . . 14 ((𝐵C𝐶C ) → (𝐵 𝐶) = (𝐶 𝐵))
5120, 3, 50syl2an 493 . . . . . . . . . . . . 13 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵 𝐶) = (𝐶 𝐵))
5249, 51syl5sseq 3686 . . . . . . . . . . . 12 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵))
5352adantr 480 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵))
54 atnssm0 29363 . . . . . . . . . . . . . . . . 17 ((𝐴C𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
551, 54mpan 706 . . . . . . . . . . . . . . . 16 (𝐶 ∈ HAtoms → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
5655adantl 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
57 inss1 3866 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴
58 sslin 3872 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐶𝐴))
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐶𝐴)
60 incom 3838 . . . . . . . . . . . . . . . . . 18 (𝐶𝐴) = (𝐴𝐶)
6159, 60sseqtri 3670 . . . . . . . . . . . . . . . . 17 (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐴𝐶)
62 sseq2 3660 . . . . . . . . . . . . . . . . 17 ((𝐴𝐶) = 0 → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐴𝐶) ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0))
6361, 62mpbii 223 . . . . . . . . . . . . . . . 16 ((𝐴𝐶) = 0 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0)
64 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝐵C𝐶C ) → 𝐶C )
65 chjcl 28344 . . . . . . . . . . . . . . . . . . . 20 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
66 chincl 28486 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
671, 65, 66sylancr 696 . . . . . . . . . . . . . . . . . . 19 ((𝐵C𝐶C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
68 chincl 28486 . . . . . . . . . . . . . . . . . . 19 ((𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ C ) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
6964, 67, 68syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((𝐵C𝐶C ) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
7020, 3, 69syl2an 493 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
71 chle0 28430 . . . . . . . . . . . . . . . . 17 ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0 ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7270, 71syl 17 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0 ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7363, 72syl5ib 234 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴𝐶) = 0 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7456, 73sylbid 230 . . . . . . . . . . . . . 14 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7574imp 444 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ¬ 𝐶𝐴) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7675adantrl 752 . . . . . . . . . . . 12 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴)) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7776adantrr 753 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7853, 77jca 553 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵) ∧ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
79 atexch 29368 . . . . . . . . . 10 ((𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (((𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵) ∧ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0) → 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8048, 78, 79sylc 65 . . . . . . . . 9 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))
8180, 57jctil 559 . . . . . . . 8 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8281ex 449 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))))
8344, 82jcad 554 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))))
84 sseq1 3659 . . . . . . . 8 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝑥𝐴 ↔ (𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴))
85 oveq2 6698 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝐶 𝑥) = (𝐶 (𝐴 ∩ (𝐵 𝐶))))
8685sseq2d 3666 . . . . . . . 8 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8784, 86anbi12d 747 . . . . . . 7 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → ((𝑥𝐴𝐵 ⊆ (𝐶 𝑥)) ↔ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))))
8887rspcev 3340 . . . . . 6 (((𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
8983, 88syl6 35 . . . . 5 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
9089expd 451 . . . 4 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9143, 90syl5bi 232 . . 3 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ (𝐵 = 𝐶𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9242, 91syl7 74 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ (𝐵 = 𝐶𝐶𝐴) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9319, 41, 92ecase3d 1003 1 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  cin 3606  wss 3607  (class class class)co 6690   C cch 27914   chj 27918  0c0h 27920  HAtomscat 27950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070  ax-hcompl 28187
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-cn 21079  df-cnp 21080  df-lm 21081  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cfil 23099  df-cau 23100  df-cmet 23101  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684  df-ssp 27705  df-ph 27796  df-cbn 27847  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-hlim 27957  df-hcau 27958  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238  df-shs 28295  df-span 28296  df-chj 28297  df-chsup 28298  df-pjh 28382  df-cv 29266  df-at 29325
This theorem is referenced by:  mdsymlem3  29392
  Copyright terms: Public domain W3C validator