Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj2b Structured version   Visualization version   GIF version

Theorem atcvrj2b 36570
Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvrj1x.l = (le‘𝐾)
atcvrj1x.j = (join‘𝐾)
atcvrj1x.c 𝐶 = ( ⋖ ‘𝐾)
atcvrj1x.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvrj2b ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑄𝑅𝑃 (𝑄 𝑅)) ↔ 𝑃𝐶(𝑄 𝑅)))

Proof of Theorem atcvrj2b
StepHypRef Expression
1 simpl3l 1224 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑄𝑅)
21necomd 3073 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑅𝑄)
3 simpl1 1187 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝐾 ∈ HL)
4 simpl23 1249 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑅𝐴)
5 simpl22 1248 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑄𝐴)
6 atcvrj1x.j . . . . . . . 8 = (join‘𝐾)
7 atcvrj1x.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
8 atcvrj1x.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
96, 7, 8atcvr2 36556 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴) → (𝑅𝑄𝑅𝐶(𝑄 𝑅)))
103, 4, 5, 9syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → (𝑅𝑄𝑅𝐶(𝑄 𝑅)))
112, 10mpbid 234 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑅𝐶(𝑄 𝑅))
12 breq1 5071 . . . . . 6 (𝑃 = 𝑅 → (𝑃𝐶(𝑄 𝑅) ↔ 𝑅𝐶(𝑄 𝑅)))
1312adantl 484 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → (𝑃𝐶(𝑄 𝑅) ↔ 𝑅𝐶(𝑄 𝑅)))
1411, 13mpbird 259 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃 = 𝑅) → 𝑃𝐶(𝑄 𝑅))
15 simpl1 1187 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝐾 ∈ HL)
16 simpl2 1188 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → (𝑃𝐴𝑄𝐴𝑅𝐴))
17 simpr 487 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝑃𝑅)
18 simpl3r 1225 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝑃 (𝑄 𝑅))
19 atcvrj1x.l . . . . . 6 = (le‘𝐾)
2019, 6, 7, 8atcvrj1 36569 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
2115, 16, 17, 18, 20syl112anc 1370 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) ∧ 𝑃𝑅) → 𝑃𝐶(𝑄 𝑅))
2214, 21pm2.61dane 3106 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃 (𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
23223expia 1117 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑄𝑅𝑃 (𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅)))
24 hlatl 36498 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2524ad2antrr 724 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ AtLat)
26 simplr1 1211 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐴)
27 eqid 2823 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
2827, 8atn0 36446 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃 ≠ (0.‘𝐾))
2925, 26, 28syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ≠ (0.‘𝐾))
30 simpll 765 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ HL)
31 eqid 2823 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
3231, 8atbase 36427 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3326, 32syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
34 simplr2 1212 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝐴)
35 simplr3 1213 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅𝐴)
36 simpr 487 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅))
3731, 6, 27, 7, 8atcvrj0 36566 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄𝐴𝑅𝐴) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 = (0.‘𝐾) ↔ 𝑄 = 𝑅))
3830, 33, 34, 35, 36, 37syl131anc 1379 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 = (0.‘𝐾) ↔ 𝑄 = 𝑅))
3938necon3bid 3062 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑃 ≠ (0.‘𝐾) ↔ 𝑄𝑅))
4029, 39mpbid 234 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄𝑅)
41 hllat 36501 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4241ad2antrr 724 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝐾 ∈ Lat)
4331, 8atbase 36427 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
4434, 43syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
4531, 8atbase 36427 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
4635, 45syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
4731, 6latjcl 17663 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
4842, 44, 46, 47syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑄 𝑅) ∈ (Base‘𝐾))
4930, 33, 483jca 1124 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)))
5031, 19, 7cvrle 36416 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 (𝑄 𝑅))
5149, 50sylancom 590 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 (𝑄 𝑅))
5240, 51jca 514 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑃𝐶(𝑄 𝑅)) → (𝑄𝑅𝑃 (𝑄 𝑅)))
5352ex 415 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝐶(𝑄 𝑅) → (𝑄𝑅𝑃 (𝑄 𝑅))))
5423, 53impbid 214 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑄𝑅𝑃 (𝑄 𝑅)) ↔ 𝑃𝐶(𝑄 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  joincjn 17556  0.cp0 17649  Latclat 17657  ccvr 36400  Atomscatm 36401  AtLatcal 36402  HLchlt 36488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489
This theorem is referenced by:  atcvrj2  36571
  Copyright terms: Public domain W3C validator