Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  athgt Structured version   Visualization version   GIF version

Theorem athgt 35060
 Description: A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
athgt.j = (join‘𝐾)
athgt.c 𝐶 = ( ⋖ ‘𝐾)
athgt.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
athgt (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   ,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   𝐶(𝑠,𝑟,𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem athgt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2651 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 eqid 2651 . . 3 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2651 . . 3 (1.‘𝐾) = (1.‘𝐾)
51, 2, 3, 4hlhgt4 34992 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))
6 simpl1 1084 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → 𝐾 ∈ HL)
7 hlop 34967 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
81, 3op0cl 34789 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
96, 7, 83syl 18 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (0.‘𝐾) ∈ (Base‘𝐾))
10 simpl2l 1134 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → 𝑥 ∈ (Base‘𝐾))
11 simprll 819 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (0.‘𝐾)(lt‘𝐾)𝑥)
12 eqid 2651 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
13 athgt.j . . . . . . . . . 10 = (join‘𝐾)
14 athgt.c . . . . . . . . . 10 𝐶 = ( ⋖ ‘𝐾)
15 athgt.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
161, 12, 2, 13, 14, 15hlrelat3 35016 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) ∧ (0.‘𝐾)(lt‘𝐾)𝑥) → ∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥))
176, 9, 10, 11, 16syl31anc 1369 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥))
18 simp11 1111 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
19 simp3 1083 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝑝𝐴)
203, 14, 15atcvr0 34893 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴) → (0.‘𝐾)𝐶𝑝)
2118, 19, 20syl2anc 694 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (0.‘𝐾)𝐶𝑝)
22 hlol 34966 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ OL)
2318, 22syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝐾 ∈ OL)
241, 15atbase 34894 . . . . . . . . . . . . . . 15 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
25243ad2ant3 1104 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → 𝑝 ∈ (Base‘𝐾))
261, 13, 3olj02 34831 . . . . . . . . . . . . . 14 ((𝐾 ∈ OL ∧ 𝑝 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑝) = 𝑝)
2723, 25, 26syl2anc 694 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → ((0.‘𝐾) 𝑝) = 𝑝)
2821, 27breqtrrd 4713 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (0.‘𝐾)𝐶((0.‘𝐾) 𝑝))
2928biantrurd 528 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾) 𝑝)(le‘𝐾)𝑥 ↔ ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥)))
3027breq1d 4695 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾) 𝑝)(le‘𝐾)𝑥𝑝(le‘𝐾)𝑥))
3129, 30bitr3d 270 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ 𝑝(le‘𝐾)𝑥))
32313expa 1284 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) ∧ 𝑝𝐴) → (((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ 𝑝(le‘𝐾)𝑥))
3332rexbidva 3078 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (∃𝑝𝐴 ((0.‘𝐾)𝐶((0.‘𝐾) 𝑝) ∧ ((0.‘𝐾) 𝑝)(le‘𝐾)𝑥) ↔ ∃𝑝𝐴 𝑝(le‘𝐾)𝑥))
3417, 33mpbid 222 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴 𝑝(le‘𝐾)𝑥)
35 simp11 1111 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝐾 ∈ HL)
36253adant3r 1363 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝 ∈ (Base‘𝐾))
37 simp12r 1195 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑦 ∈ (Base‘𝐾))
38 simp3r 1110 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝(le‘𝐾)𝑥)
39 simp2lr 1149 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑥(lt‘𝐾)𝑦)
40 hlpos 34970 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4135, 40syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝐾 ∈ Poset)
42 simp12l 1194 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑥 ∈ (Base‘𝐾))
431, 12, 2plelttr 17019 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑝(le‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) → 𝑝(lt‘𝐾)𝑦))
4441, 36, 42, 37, 43syl13anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ((𝑝(le‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) → 𝑝(lt‘𝐾)𝑦))
4538, 39, 44mp2and 715 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → 𝑝(lt‘𝐾)𝑦)
461, 12, 2, 13, 14, 15hlrelat3 35016 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑝(lt‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦))
4735, 36, 37, 45, 46syl31anc 1369 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦))
48 simp11 1111 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ HL)
49 hllat 34968 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ HL → 𝐾 ∈ Lat)
5048, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ Lat)
51 simp3ll 1152 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑝𝐴)
5251, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑝 ∈ (Base‘𝐾))
53 simp3lr 1153 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑞𝐴)
541, 15atbase 34894 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑞 ∈ (Base‘𝐾))
561, 13latjcl 17098 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 𝑞) ∈ (Base‘𝐾))
5750, 52, 55, 56syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞) ∈ (Base‘𝐾))
58 simp13 1113 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑧 ∈ (Base‘𝐾))
59 simp3r 1110 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞)(le‘𝐾)𝑦)
60 simp2l 1107 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑦(lt‘𝐾)𝑧)
6148, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝐾 ∈ Poset)
62 simp12 1112 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → 𝑦 ∈ (Base‘𝐾))
631, 12, 2plelttr 17019 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ Poset ∧ ((𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾))) → (((𝑝 𝑞)(le‘𝐾)𝑦𝑦(lt‘𝐾)𝑧) → (𝑝 𝑞)(lt‘𝐾)𝑧))
6461, 57, 62, 58, 63syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (((𝑝 𝑞)(le‘𝐾)𝑦𝑦(lt‘𝐾)𝑧) → (𝑝 𝑞)(lt‘𝐾)𝑧))
6559, 60, 64mp2and 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑝 𝑞)(lt‘𝐾)𝑧)
661, 12, 2, 13, 14, 15hlrelat3 35016 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑝 𝑞)(lt‘𝐾)𝑧) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧))
6748, 57, 58, 65, 66syl31anc 1369 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧))
68 simp1ll 1144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ HL)
6968, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ Lat)
70 simp2ll 1148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑝𝐴)
7170, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑝 ∈ (Base‘𝐾))
72 simp2lr 1149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑞𝐴)
7372, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑞 ∈ (Base‘𝐾))
7469, 71, 73, 56syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → (𝑝 𝑞) ∈ (Base‘𝐾))
75 simp3l 1109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑟𝐴)
761, 15atbase 34894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑟 ∈ (Base‘𝐾))
781, 13latjcl 17098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
7969, 74, 77, 78syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
801, 4op1cl 34790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
8168, 7, 803syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → (1.‘𝐾) ∈ (Base‘𝐾))
82 simp3r 1110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)
83 simp1r 1106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑧(lt‘𝐾)(1.‘𝐾))
8468, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝐾 ∈ Poset)
85 simp1lr 1145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → 𝑧 ∈ (Base‘𝐾))
861, 12, 2plelttr 17019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ Poset ∧ (((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾))) → ((((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)))
8784, 79, 85, 81, 86syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)))
8882, 83, 87mp2and 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾))
891, 12, 2, 13, 14, 15hlrelat3 35016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ HL ∧ ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) ∧ ((𝑝 𝑞) 𝑟)(lt‘𝐾)(1.‘𝐾)) → ∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)))
9068, 79, 81, 88, 89syl31anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)))
91 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)) → ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
9291reximi 3040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑠𝐴 (((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠) ∧ (((𝑝 𝑞) 𝑟) 𝑠)(le‘𝐾)(1.‘𝐾)) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
9390, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) ∧ (𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧)) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))
94933exp 1283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ((𝑟𝐴 ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
9594exp4a 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
9695ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ HL ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑧(lt‘𝐾)(1.‘𝐾) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
97963adant2 1100 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑧(lt‘𝐾)(1.‘𝐾) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
98973imp 1275 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ 𝑧(lt‘𝐾)(1.‘𝐾) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
99983adant2l 1360 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (𝑟𝐴 → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
10099imp 444 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) ∧ 𝑟𝐴) → (((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧 → ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))
101100anim2d 588 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) ∧ 𝑟𝐴) → (((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
102101reximdva 3046 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → (∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ((𝑝 𝑞) 𝑟)(le‘𝐾)𝑧) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
10367, 102mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ ((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦)) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))
1041033exp 1283 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (((𝑝𝐴𝑞𝐴) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
105104exp4a 632 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → ((𝑝𝐴𝑞𝐴) → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
106105exp4a 632 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (𝑝𝐴 → (𝑞𝐴 → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
1071063adant2l 1360 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → ((𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) → (𝑝𝐴 → (𝑞𝐴 → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
1081073imp1 1302 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝 𝑞)(le‘𝐾)𝑦 → ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
109108anim2d 588 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
110109reximdva 3046 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)) ∧ 𝑝𝐴) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1111103adant2l 1360 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ 𝑝𝐴) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1121113adant3r 1363 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → (∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ (𝑝 𝑞)(le‘𝐾)𝑦) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
11347, 112mpd 15 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) ∧ (𝑝𝐴𝑝(le‘𝐾)𝑥)) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
1141133expia 1286 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ((𝑝𝐴𝑝(le‘𝐾)𝑥) → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
115114expd 451 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (𝑝𝐴 → (𝑝(le‘𝐾)𝑥 → ∃𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
116115reximdvai 3044 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → (∃𝑝𝐴 𝑝(le‘𝐾)𝑥 → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
11734, 116mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) ∧ (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾)))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
1181173exp1 1305 . . . . 5 (𝐾 ∈ HL → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → ((((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))))
119118imp 444 . . . 4 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑧 ∈ (Base‘𝐾) → ((((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))))
120119rexlimdv 3059 . . 3 ((𝐾 ∈ HL ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
121120rexlimdvva 3067 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠)))))
1225, 121mpd 15 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝𝐶(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)𝐶((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)𝐶(((𝑝 𝑞) 𝑟) 𝑠))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∃wrex 2942   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  Posetcpo 16987  ltcplt 16988  joincjn 16991  0.cp0 17084  1.cp1 17085  Latclat 17092  OPcops 34777  OLcol 34779   ⋖ ccvr 34867  Atomscatm 34868  HLchlt 34955 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956 This theorem is referenced by:  3dim0  35061
 Copyright terms: Public domain W3C validator