Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atl0cl Structured version   Visualization version   GIF version

Theorem atl0cl 34409
Description: An atomic lattice has a zero element. We can use this in place of op0cl 34290 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atl0cl.b 𝐵 = (Base‘𝐾)
atl0cl.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atl0cl (𝐾 ∈ AtLat → 0𝐵)

Proof of Theorem atl0cl
StepHypRef Expression
1 atl0cl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2620 . . 3 (glb‘𝐾) = (glb‘𝐾)
3 atl0cl.z . . 3 0 = (0.‘𝐾)
41, 2, 3p0val 17022 . 2 (𝐾 ∈ AtLat → 0 = ((glb‘𝐾)‘𝐵))
5 id 22 . . 3 (𝐾 ∈ AtLat → 𝐾 ∈ AtLat)
6 eqid 2620 . . . 4 (lub‘𝐾) = (lub‘𝐾)
71, 6, 2atl0dm 34408 . . 3 (𝐾 ∈ AtLat → 𝐵 ∈ dom (glb‘𝐾))
81, 2, 5, 7glbcl 16979 . 2 (𝐾 ∈ AtLat → ((glb‘𝐾)‘𝐵) ∈ 𝐵)
94, 8eqeltrd 2699 1 (𝐾 ∈ AtLat → 0𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1481  wcel 1988  cfv 5876  Basecbs 15838  lubclub 16923  glbcglb 16924  0.cp0 17018  AtLatcal 34370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-glb 16956  df-p0 17020  df-atl 34404
This theorem is referenced by:  atlle0  34411  atlltn0  34412  isat3  34413  atnle0  34415  atlen0  34416  atcmp  34417  atcvreq0  34420  pmap0  34870  dia0  36160  dih0cnv  36391
  Copyright terms: Public domain W3C validator