![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atl0le | Structured version Visualization version GIF version |
Description: Orthoposet zero is less than or equal to any element. (ch0le 28609 analog.) (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
atl0le.b | ⊢ 𝐵 = (Base‘𝐾) |
atl0le.l | ⊢ ≤ = (le‘𝐾) |
atl0le.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
atl0le | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl0le.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2760 | . 2 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | atl0le.l | . 2 ⊢ ≤ = (le‘𝐾) | |
4 | atl0le.z | . 2 ⊢ 0 = (0.‘𝐾) | |
5 | simpl 474 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
6 | simpr 479 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
7 | eqid 2760 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
8 | 1, 7, 2 | atl0dm 35092 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom (glb‘𝐾)) |
9 | 8 | adantr 472 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ dom (glb‘𝐾)) |
10 | 1, 2, 3, 4, 5, 6, 9 | p0le 17244 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 dom cdm 5266 ‘cfv 6049 Basecbs 16059 lecple 16150 lubclub 17143 glbcglb 17144 0.cp0 17238 AtLatcal 35054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-glb 17176 df-p0 17240 df-atl 35088 |
This theorem is referenced by: atlle0 35095 atlltn0 35096 atcvreq0 35104 trlval4 35978 dian0 36830 dia0 36843 dihmeetlem4preN 37097 |
Copyright terms: Public domain | W3C validator |