![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlpos | Structured version Visualization version GIF version |
Description: An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
atlpos | ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atllat 34905 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
2 | latpos 17097 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 Posetcpo 16987 Latclat 17092 AtLatcal 34869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-dm 5153 df-iota 5889 df-fv 5934 df-lat 17093 df-atl 34903 |
This theorem is referenced by: atlle0 34910 atnle0 34914 atlen0 34915 atcmp 34916 atcvreq0 34919 atlatmstc 34924 atlatle 34925 atlrelat1 34926 |
Copyright terms: Public domain | W3C validator |