Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod1i1 Structured version   Visualization version   GIF version

Theorem atmod1i1 33961
Description: Version of modular law pmod1i 33952 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod1i1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑌) → (𝑃 (𝑋 𝑌)) = ((𝑃 𝑋) 𝑌))

Proof of Theorem atmod1i1
StepHypRef Expression
1 simpl 471 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝐾 ∈ HL)
2 simpr2 1060 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3 simpr1 1059 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑃𝐴)
4 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
5 atmod.j . . . . . 6 = (join‘𝐾)
6 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
7 eqid 2606 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
8 eqid 2606 . . . . . 6 (+𝑃𝐾) = (+𝑃𝐾)
94, 5, 6, 7, 8pmapjat2 33958 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → ((pmap‘𝐾)‘(𝑃 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃𝐾)((pmap‘𝐾)‘𝑋)))
101, 2, 3, 9syl3anc 1317 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → ((pmap‘𝐾)‘(𝑃 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃𝐾)((pmap‘𝐾)‘𝑋)))
114, 6atbase 33394 . . . . 5 (𝑃𝐴𝑃𝐵)
12 atmod.l . . . . . 6 = (le‘𝐾)
13 atmod.m . . . . . 6 = (meet‘𝐾)
144, 12, 5, 13, 7, 8hlmod1i 33960 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐵𝑋𝐵𝑌𝐵)) → ((𝑃 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 𝑋) 𝑌) = (𝑃 (𝑋 𝑌))))
1511, 14syl3anr1 1369 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → ((𝑃 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 𝑋) 𝑌) = (𝑃 (𝑋 𝑌))))
1610, 15mpan2d 705 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → (𝑃 𝑌 → ((𝑃 𝑋) 𝑌) = (𝑃 (𝑋 𝑌))))
17163impia 1252 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑌) → ((𝑃 𝑋) 𝑌) = (𝑃 (𝑋 𝑌)))
1817eqcomd 2612 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑌) → (𝑃 (𝑋 𝑌)) = ((𝑃 𝑋) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4574  cfv 5787  (class class class)co 6524  Basecbs 15638  lecple 15718  joincjn 16710  meetcmee 16711  Atomscatm 33368  HLchlt 33455  pmapcpmap 33601  +𝑃cpadd 33899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-1st 7033  df-2nd 7034  df-preset 16694  df-poset 16712  df-plt 16724  df-lub 16740  df-glb 16741  df-join 16742  df-meet 16743  df-p0 16805  df-lat 16812  df-clat 16874  df-oposet 33281  df-ol 33283  df-oml 33284  df-covers 33371  df-ats 33372  df-atl 33403  df-cvlat 33427  df-hlat 33456  df-psubsp 33607  df-pmap 33608  df-padd 33900
This theorem is referenced by:  atmod1i1m  33962  atmod2i1  33965  atmod3i1  33968  atmod4i1  33970  dalawlem6  33980  dalawlem11  33985  dalawlem12  33986  cdleme11g  34370  cdlemednpq  34404  cdleme20c  34417  cdleme22e  34450  cdleme22eALTN  34451  cdleme35c  34557
  Copyright terms: Public domain W3C validator