Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod1i1m Structured version   Visualization version   GIF version

Theorem atmod1i1m 35462
Description: Version of modular law pmod1i 35452 that holds in a Hilbert lattice, when an element meets an atom. (Contributed by NM, 2-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod1i1m (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))

Proof of Theorem atmod1i1m
StepHypRef Expression
1 simpl1l 1132 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → 𝐾 ∈ HL)
2 simpr 476 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → (𝑋 𝑃) ∈ 𝐴)
3 simpl22 1160 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → 𝑌𝐵)
4 simpl23 1161 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → 𝑍𝐵)
5 simpl3 1086 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → (𝑋 𝑃) 𝑍)
6 atmod.b . . . 4 𝐵 = (Base‘𝐾)
7 atmod.l . . . 4 = (le‘𝐾)
8 atmod.j . . . 4 = (join‘𝐾)
9 atmod.m . . . 4 = (meet‘𝐾)
10 atmod.a . . . 4 𝐴 = (Atoms‘𝐾)
116, 7, 8, 9, 10atmod1i1 35461 . . 3 ((𝐾 ∈ HL ∧ ((𝑋 𝑃) ∈ 𝐴𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
121, 2, 3, 4, 5, 11syl131anc 1379 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
13 simp1l 1105 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝐾 ∈ HL)
14 hlol 34966 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
1513, 14syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝐾 ∈ OL)
1615adantr 480 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝐾 ∈ OL)
17 hllat 34968 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1813, 17syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝐾 ∈ Lat)
1918adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝐾 ∈ Lat)
20 simpl22 1160 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝑌𝐵)
21 simpl23 1161 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝑍𝐵)
226, 9latmcl 17099 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
2319, 20, 21, 22syl3anc 1366 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → (𝑌 𝑍) ∈ 𝐵)
24 eqid 2651 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
256, 8, 24olj02 34831 . . . 4 ((𝐾 ∈ OL ∧ (𝑌 𝑍) ∈ 𝐵) → ((0.‘𝐾) (𝑌 𝑍)) = (𝑌 𝑍))
2616, 23, 25syl2anc 694 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((0.‘𝐾) (𝑌 𝑍)) = (𝑌 𝑍))
27 oveq1 6697 . . . 4 ((𝑋 𝑃) = (0.‘𝐾) → ((𝑋 𝑃) (𝑌 𝑍)) = ((0.‘𝐾) (𝑌 𝑍)))
2827adantl 481 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) (𝑌 𝑍)) = ((0.‘𝐾) (𝑌 𝑍)))
29 oveq1 6697 . . . . . 6 ((𝑋 𝑃) = (0.‘𝐾) → ((𝑋 𝑃) 𝑌) = ((0.‘𝐾) 𝑌))
3029adantl 481 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) 𝑌) = ((0.‘𝐾) 𝑌))
316, 8, 24olj02 34831 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ((0.‘𝐾) 𝑌) = 𝑌)
3216, 20, 31syl2anc 694 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((0.‘𝐾) 𝑌) = 𝑌)
3330, 32eqtrd 2685 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) 𝑌) = 𝑌)
3433oveq1d 6705 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → (((𝑋 𝑃) 𝑌) 𝑍) = (𝑌 𝑍))
3526, 28, 343eqtr4d 2695 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
36 simp21 1114 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝑋𝐵)
37 simp1r 1106 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝑃𝐴)
386, 9, 24, 10meetat2 34902 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = (0.‘𝐾)))
3915, 36, 37, 38syl3anc 1366 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = (0.‘𝐾)))
4012, 35, 39mpjaodan 844 1 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  meetcmee 16992  0.cp0 17084  Latclat 17092  OLcol 34779  Atomscatm 34868  HLchlt 34955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-psubsp 35107  df-pmap 35108  df-padd 35400
This theorem is referenced by:  dalawlem3  35477  dalawlem6  35480
  Copyright terms: Public domain W3C validator