Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod1i1m Structured version   Visualization version   GIF version

Theorem atmod1i1m 33961
Description: Version of modular law pmod1i 33951 that holds in a Hilbert lattice, when an element meets an atom. (Contributed by NM, 2-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod1i1m (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))

Proof of Theorem atmod1i1m
StepHypRef Expression
1 simpl1l 1104 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → 𝐾 ∈ HL)
2 simpr 475 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → (𝑋 𝑃) ∈ 𝐴)
3 simpl22 1132 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → 𝑌𝐵)
4 simpl23 1133 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → 𝑍𝐵)
5 simpl3 1058 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → (𝑋 𝑃) 𝑍)
6 atmod.b . . . 4 𝐵 = (Base‘𝐾)
7 atmod.l . . . 4 = (le‘𝐾)
8 atmod.j . . . 4 = (join‘𝐾)
9 atmod.m . . . 4 = (meet‘𝐾)
10 atmod.a . . . 4 𝐴 = (Atoms‘𝐾)
116, 7, 8, 9, 10atmod1i1 33960 . . 3 ((𝐾 ∈ HL ∧ ((𝑋 𝑃) ∈ 𝐴𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
121, 2, 3, 4, 5, 11syl131anc 1330 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) ∈ 𝐴) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
13 simp1l 1077 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝐾 ∈ HL)
14 hlol 33465 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
1513, 14syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝐾 ∈ OL)
1615adantr 479 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝐾 ∈ OL)
17 hllat 33467 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1813, 17syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝐾 ∈ Lat)
1918adantr 479 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝐾 ∈ Lat)
20 simpl22 1132 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝑌𝐵)
21 simpl23 1133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → 𝑍𝐵)
226, 9latmcl 16817 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
2319, 20, 21, 22syl3anc 1317 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → (𝑌 𝑍) ∈ 𝐵)
24 eqid 2605 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
256, 8, 24olj02 33330 . . . 4 ((𝐾 ∈ OL ∧ (𝑌 𝑍) ∈ 𝐵) → ((0.‘𝐾) (𝑌 𝑍)) = (𝑌 𝑍))
2616, 23, 25syl2anc 690 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((0.‘𝐾) (𝑌 𝑍)) = (𝑌 𝑍))
27 oveq1 6530 . . . 4 ((𝑋 𝑃) = (0.‘𝐾) → ((𝑋 𝑃) (𝑌 𝑍)) = ((0.‘𝐾) (𝑌 𝑍)))
2827adantl 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) (𝑌 𝑍)) = ((0.‘𝐾) (𝑌 𝑍)))
29 oveq1 6530 . . . . . 6 ((𝑋 𝑃) = (0.‘𝐾) → ((𝑋 𝑃) 𝑌) = ((0.‘𝐾) 𝑌))
3029adantl 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) 𝑌) = ((0.‘𝐾) 𝑌))
316, 8, 24olj02 33330 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ((0.‘𝐾) 𝑌) = 𝑌)
3216, 20, 31syl2anc 690 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((0.‘𝐾) 𝑌) = 𝑌)
3330, 32eqtrd 2639 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) 𝑌) = 𝑌)
3433oveq1d 6538 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → (((𝑋 𝑃) 𝑌) 𝑍) = (𝑌 𝑍))
3526, 28, 343eqtr4d 2649 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) ∧ (𝑋 𝑃) = (0.‘𝐾)) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
36 simp21 1086 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝑋𝐵)
37 simp1r 1078 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → 𝑃𝐴)
386, 9, 24, 10meetat2 33401 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑃𝐴) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = (0.‘𝐾)))
3915, 36, 37, 38syl3anc 1317 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) ∈ 𝐴 ∨ (𝑋 𝑃) = (0.‘𝐾)))
4012, 35, 39mpjaodan 822 1 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑃) 𝑍) → ((𝑋 𝑃) (𝑌 𝑍)) = (((𝑋 𝑃) 𝑌) 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1975   class class class wbr 4573  cfv 5786  (class class class)co 6523  Basecbs 15637  lecple 15717  joincjn 16709  meetcmee 16710  0.cp0 16802  Latclat 16810  OLcol 33278  Atomscatm 33367  HLchlt 33454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-1st 7032  df-2nd 7033  df-preset 16693  df-poset 16711  df-plt 16723  df-lub 16739  df-glb 16740  df-join 16741  df-meet 16742  df-p0 16804  df-lat 16811  df-clat 16873  df-oposet 33280  df-ol 33282  df-oml 33283  df-covers 33370  df-ats 33371  df-atl 33402  df-cvlat 33426  df-hlat 33455  df-psubsp 33606  df-pmap 33607  df-padd 33899
This theorem is referenced by:  dalawlem3  33976  dalawlem6  33979
  Copyright terms: Public domain W3C validator