Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atn0 Structured version   Visualization version   GIF version

Theorem atn0 34072
 Description: An atom is not zero. (atne0 29050 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atne0.z 0 = (0.‘𝐾)
atne0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atn0 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃0 )

Proof of Theorem atn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2621 . . . 4 (le‘𝐾) = (le‘𝐾)
3 atne0.z . . . 4 0 = (0.‘𝐾)
4 atne0.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4isat3 34071 . . 3 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃 ∈ (Base‘𝐾) ∧ 𝑃0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
6 simp2 1060 . . 3 ((𝑃 ∈ (Base‘𝐾) ∧ 𝑃0 ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑃 → (𝑥 = 𝑃𝑥 = 0 ))) → 𝑃0 )
75, 6syl6bi 243 . 2 (𝐾 ∈ AtLat → (𝑃𝐴𝑃0 ))
87imp 445 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907   class class class wbr 4613  ‘cfv 5847  Basecbs 15781  lecple 15869  0.cp0 16958  Atomscatm 34027  AtLatcal 34028 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-plt 16879  df-glb 16896  df-p0 16960  df-covers 34030  df-ats 34031  df-atl 34062 This theorem is referenced by:  atncvrN  34079  atnle  34081  atlatmstc  34083  intnatN  34170  atcvrneN  34193  atcvrj2b  34195  2llnm3N  34332  pmapjat1  34616  lhpocnle  34779  lhpmatb  34794  lhp2atnle  34796  trlatn0  34936  ltrnnidn  34938  trlnidatb  34941  cdlemg33c  35473  cdlemg33e  35475  dihatexv  36104
 Copyright terms: Public domain W3C validator