![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atnem0 | Structured version Visualization version GIF version |
Description: The meet of distinct atoms is zero. (atnemeq0 29541 analog.) (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
atnem0.m | ⊢ ∧ = (meet‘𝐾) |
atnem0.z | ⊢ 0 = (0.‘𝐾) |
atnem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atnem0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2756 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | atnem0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atncmp 35098 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑄 ↔ 𝑃 ≠ 𝑄)) |
4 | eqid 2756 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | 4, 2 | atbase 35075 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
6 | atnem0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
7 | atnem0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
8 | 4, 1, 6, 7, 2 | atnle 35103 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ (Base‘𝐾)) → (¬ 𝑃(le‘𝐾)𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
9 | 5, 8 | syl3an3 1170 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
10 | 3, 9 | bitr3d 270 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1628 ∈ wcel 2135 ≠ wne 2928 class class class wbr 4800 ‘cfv 6045 (class class class)co 6809 Basecbs 16055 lecple 16146 meetcmee 17142 0.cp0 17234 Atomscatm 35049 AtLatcal 35050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-preset 17125 df-poset 17143 df-plt 17155 df-lub 17171 df-glb 17172 df-join 17173 df-meet 17174 df-p0 17236 df-lat 17243 df-covers 35052 df-ats 35053 df-atl 35084 |
This theorem is referenced by: cvlatcvr1 35127 atcvrj1 35216 dalem24 35482 lhp2at0 35817 trlval3 35973 cdleme0e 36003 cdleme7c 36031 |
Copyright terms: Public domain | W3C validator |