Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnlej1 Structured version   Visualization version   GIF version

Theorem atnlej1 34166
 Description: If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
atnlej.l = (le‘𝐾)
atnlej.j = (join‘𝐾)
atnlej.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnlej1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑄)

Proof of Theorem atnlej1
StepHypRef Expression
1 hllat 34151 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1080 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝐾 ∈ Lat)
3 simp21 1092 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝐴)
4 eqid 2621 . . . 4 (Base‘𝐾) = (Base‘𝐾)
5 atnlej.a . . . 4 𝐴 = (Atoms‘𝐾)
64, 5atbase 34077 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃 ∈ (Base‘𝐾))
8 simp22 1093 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑄𝐴)
94, 5atbase 34077 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑄 ∈ (Base‘𝐾))
11 simp23 1094 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑅𝐴)
124, 5atbase 34077 . . 3 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑅 ∈ (Base‘𝐾))
14 simp3 1061 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → ¬ 𝑃 (𝑄 𝑅))
15 atnlej.l . . 3 = (le‘𝐾)
16 atnlej.j . . 3 = (join‘𝐾)
174, 15, 16latnlej1l 16993 . 2 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑄)
182, 7, 10, 13, 14, 17syl131anc 1336 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑃 (𝑄 𝑅)) → 𝑃𝑄)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   class class class wbr 4615  ‘cfv 5849  (class class class)co 6607  Basecbs 15784  lecple 15872  joincjn 16868  Latclat 16969  Atomscatm 34051  HLchlt 34138 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-lub 16898  df-join 16900  df-lat 16970  df-ats 34055  df-atl 34086  df-cvlat 34110  df-hlat 34139 This theorem is referenced by:  4atlem0be  34382  dalem5  34454  dalem-cly  34458  4atexlemex6  34861  cdleme00a  34997  cdleme21a  35114  cdleme21b  35115  cdleme21c  35116
 Copyright terms: Public domain W3C validator