HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atom1d Structured version   Visualization version   GIF version

Theorem atom1d 29340
Description: The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of [BeltramettiCassinelli] p. 107. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atom1d (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})))
Distinct variable group:   𝑥,𝐴

Proof of Theorem atom1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elat2 29327 . . . 4 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))))
2 chne0 28481 . . . . . 6 (𝐴C → (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0))
3 nfv 1883 . . . . . . 7 𝑥 𝐴C
4 nfv 1883 . . . . . . . 8 𝑥𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0))
5 nfre1 3034 . . . . . . . 8 𝑥𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))
64, 5nfim 1865 . . . . . . 7 𝑥(∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
7 chel 28215 . . . . . . . . . . 11 ((𝐴C𝑥𝐴) → 𝑥 ∈ ℋ)
87adantrr 753 . . . . . . . . . 10 ((𝐴C ∧ (𝑥𝐴𝑥 ≠ 0)) → 𝑥 ∈ ℋ)
98adantrr 753 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝑥 ∈ ℋ)
10 simprlr 820 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝑥 ≠ 0)
11 h1dn0 28539 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ≠ 0)
127, 11sylan 487 . . . . . . . . . . . . 13 (((𝐴C𝑥𝐴) ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ≠ 0)
1312anasss 680 . . . . . . . . . . . 12 ((𝐴C ∧ (𝑥𝐴𝑥 ≠ 0)) → (⊥‘(⊥‘{𝑥})) ≠ 0)
1413adantrr 753 . . . . . . . . . . 11 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (⊥‘(⊥‘{𝑥})) ≠ 0)
15 ch1dle 29339 . . . . . . . . . . . . . . . 16 ((𝐴C𝑥𝐴) → (⊥‘(⊥‘{𝑥})) ⊆ 𝐴)
16 snssi 4371 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → {𝑥} ⊆ ℋ)
17 occl 28291 . . . . . . . . . . . . . . . . . 18 ({𝑥} ⊆ ℋ → (⊥‘{𝑥}) ∈ C )
187, 16, 173syl 18 . . . . . . . . . . . . . . . . 17 ((𝐴C𝑥𝐴) → (⊥‘{𝑥}) ∈ C )
19 choccl 28293 . . . . . . . . . . . . . . . . 17 ((⊥‘{𝑥}) ∈ C → (⊥‘(⊥‘{𝑥})) ∈ C )
20 sseq1 3659 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦𝐴 ↔ (⊥‘(⊥‘{𝑥})) ⊆ 𝐴))
21 eqeq1 2655 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦 = 𝐴 ↔ (⊥‘(⊥‘{𝑥})) = 𝐴))
22 eqeq1 2655 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦 = 0 ↔ (⊥‘(⊥‘{𝑥})) = 0))
2321, 22orbi12d 746 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (⊥‘(⊥‘{𝑥})) → ((𝑦 = 𝐴𝑦 = 0) ↔ ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0)))
2420, 23imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑦 = (⊥‘(⊥‘{𝑥})) → ((𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) ↔ ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2524rspcv 3336 . . . . . . . . . . . . . . . . 17 ((⊥‘(⊥‘{𝑥})) ∈ C → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2618, 19, 253syl 18 . . . . . . . . . . . . . . . 16 ((𝐴C𝑥𝐴) → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2715, 26mpid 44 . . . . . . . . . . . . . . 15 ((𝐴C𝑥𝐴) → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0)))
2827impr 648 . . . . . . . . . . . . . 14 ((𝐴C ∧ (𝑥𝐴 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))
2928adantrlr 759 . . . . . . . . . . . . 13 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))
3029ord 391 . . . . . . . . . . . 12 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (¬ (⊥‘(⊥‘{𝑥})) = 𝐴 → (⊥‘(⊥‘{𝑥})) = 0))
31 nne 2827 . . . . . . . . . . . 12 (¬ (⊥‘(⊥‘{𝑥})) ≠ 0 ↔ (⊥‘(⊥‘{𝑥})) = 0)
3230, 31syl6ibr 242 . . . . . . . . . . 11 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (¬ (⊥‘(⊥‘{𝑥})) = 𝐴 → ¬ (⊥‘(⊥‘{𝑥})) ≠ 0))
3314, 32mt4d 152 . . . . . . . . . 10 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (⊥‘(⊥‘{𝑥})) = 𝐴)
3433eqcomd 2657 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝐴 = (⊥‘(⊥‘{𝑥})))
35 rspe 3032 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
369, 10, 34, 35syl12anc 1364 . . . . . . . 8 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
3736exp44 640 . . . . . . 7 (𝐴C → (𝑥𝐴 → (𝑥 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))))))
383, 6, 37rexlimd 3055 . . . . . 6 (𝐴C → (∃𝑥𝐴 𝑥 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))))
392, 38sylbid 230 . . . . 5 (𝐴C → (𝐴 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))))
4039imp32 448 . . . 4 ((𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
411, 40sylbi 207 . . 3 (𝐴 ∈ HAtoms → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
42 h1da 29336 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ∈ HAtoms)
43 eleq1 2718 . . . . . . 7 (𝐴 = (⊥‘(⊥‘{𝑥})) → (𝐴 ∈ HAtoms ↔ (⊥‘(⊥‘{𝑥})) ∈ HAtoms))
4442, 43syl5ibr 236 . . . . . 6 (𝐴 = (⊥‘(⊥‘{𝑥})) → ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → 𝐴 ∈ HAtoms))
4544expdcom 454 . . . . 5 (𝑥 ∈ ℋ → (𝑥 ≠ 0 → (𝐴 = (⊥‘(⊥‘{𝑥})) → 𝐴 ∈ HAtoms)))
4645impd 446 . . . 4 (𝑥 ∈ ℋ → ((𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))) → 𝐴 ∈ HAtoms))
4746rexlimiv 3056 . . 3 (∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))) → 𝐴 ∈ HAtoms)
4841, 47impbii 199 . 2 (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
49 spansn 28546 . . . . 5 (𝑥 ∈ ℋ → (span‘{𝑥}) = (⊥‘(⊥‘{𝑥})))
5049eqeq2d 2661 . . . 4 (𝑥 ∈ ℋ → (𝐴 = (span‘{𝑥}) ↔ 𝐴 = (⊥‘(⊥‘{𝑥}))))
5150anbi2d 740 . . 3 (𝑥 ∈ ℋ → ((𝑥 ≠ 0𝐴 = (span‘{𝑥})) ↔ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))))
5251rexbiia 3069 . 2 (∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})) ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
5348, 52bitr4i 267 1 (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  {csn 4210  cfv 5926  chil 27904  0c0v 27909   C cch 27914  cort 27915  spancspn 27917  0c0h 27920  HAtomscat 27950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070  ax-hcompl 28187
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-cn 21079  df-cnp 21080  df-lm 21081  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cfil 23099  df-cau 23100  df-cmet 23101  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684  df-ssp 27705  df-ph 27796  df-cbn 27847  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-hlim 27957  df-hcau 27958  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238  df-span 28296  df-cv 29266  df-at 29325
This theorem is referenced by:  superpos  29341  chcv1  29342  chjatom  29344
  Copyright terms: Public domain W3C validator