Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpsubclN Structured version   Visualization version   GIF version

Theorem atpsubclN 34048
Description: A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
1psubcl.a 𝐴 = (Atoms‘𝐾)
1psubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
atpsubclN ((𝐾 ∈ HL ∧ 𝑄𝐴) → {𝑄} ∈ 𝐶)

Proof of Theorem atpsubclN
StepHypRef Expression
1 snssi 4275 . . 3 (𝑄𝐴 → {𝑄} ⊆ 𝐴)
21adantl 480 . 2 ((𝐾 ∈ HL ∧ 𝑄𝐴) → {𝑄} ⊆ 𝐴)
3 1psubcl.a . . 3 𝐴 = (Atoms‘𝐾)
4 eqid 2605 . . 3 (⊥𝑃𝐾) = (⊥𝑃𝐾)
53, 42polatN 34035 . 2 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘{𝑄})) = {𝑄})
6 1psubcl.c . . . 4 𝐶 = (PSubCl‘𝐾)
73, 4, 6ispsubclN 34040 . . 3 (𝐾 ∈ HL → ({𝑄} ∈ 𝐶 ↔ ({𝑄} ⊆ 𝐴 ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘{𝑄})) = {𝑄})))
87adantr 479 . 2 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ({𝑄} ∈ 𝐶 ↔ ({𝑄} ⊆ 𝐴 ∧ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘{𝑄})) = {𝑄})))
92, 5, 8mpbir2and 958 1 ((𝐾 ∈ HL ∧ 𝑄𝐴) → {𝑄} ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wss 3535  {csn 4120  cfv 5786  Atomscatm 33367  HLchlt 33454  𝑃cpolN 34005  PSubClcpscN 34037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-riotaBAD 33056
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-undef 7259  df-preset 16693  df-poset 16711  df-plt 16723  df-lub 16739  df-glb 16740  df-join 16741  df-meet 16742  df-p0 16804  df-p1 16805  df-lat 16811  df-clat 16873  df-oposet 33280  df-ol 33282  df-oml 33283  df-covers 33370  df-ats 33371  df-atl 33402  df-cvlat 33426  df-hlat 33455  df-pmap 33607  df-polarityN 34006  df-psubclN 34038
This theorem is referenced by:  pclfinclN  34053
  Copyright terms: Public domain W3C validator