Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-frgraogt3nreg Structured version   Visualization version   GIF version

Theorem av-frgraogt3nreg 41553
Description: If a finite friendship graph has an order greater than 3, it cannot be 𝑘-regular for any 𝑘. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
av-frgrareggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
av-frgraogt3nreg ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
Distinct variable groups:   𝑘,𝐺   𝑘,𝑉

Proof of Theorem av-frgraogt3nreg
StepHypRef Expression
1 simp1 1053 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → 𝐺 ∈ FriendGraph )
2 simp2 1054 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → 𝑉 ∈ Fin)
3 hashcl 12961 . . . . . . . . . . 11 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
4 0red 9897 . . . . . . . . . . . . . 14 ((#‘𝑉) ∈ ℕ0 → 0 ∈ ℝ)
5 3re 10941 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
65a1i 11 . . . . . . . . . . . . . . . . . 18 ((#‘𝑉) ∈ ℕ0 → 3 ∈ ℝ)
7 nn0re 11148 . . . . . . . . . . . . . . . . . 18 ((#‘𝑉) ∈ ℕ0 → (#‘𝑉) ∈ ℝ)
84, 6, 73jca 1234 . . . . . . . . . . . . . . . . 17 ((#‘𝑉) ∈ ℕ0 → (0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑉) ∈ ℝ))
98adantr 479 . . . . . . . . . . . . . . . 16 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → (0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑉) ∈ ℝ))
10 3pos 10961 . . . . . . . . . . . . . . . . 17 0 < 3
1110a1i 11 . . . . . . . . . . . . . . . 16 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 0 < 3)
12 simpr 475 . . . . . . . . . . . . . . . 16 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 3 < (#‘𝑉))
13 lttr 9965 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑉) ∈ ℝ) → ((0 < 3 ∧ 3 < (#‘𝑉)) → 0 < (#‘𝑉)))
1413imp 443 . . . . . . . . . . . . . . . 16 (((0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (#‘𝑉) ∈ ℝ) ∧ (0 < 3 ∧ 3 < (#‘𝑉))) → 0 < (#‘𝑉))
159, 11, 12, 14syl12anc 1315 . . . . . . . . . . . . . . 15 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 0 < (#‘𝑉))
1615ex 448 . . . . . . . . . . . . . 14 ((#‘𝑉) ∈ ℕ0 → (3 < (#‘𝑉) → 0 < (#‘𝑉)))
17 ltne 9985 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 < (#‘𝑉)) → (#‘𝑉) ≠ 0)
184, 16, 17syl6an 565 . . . . . . . . . . . . 13 ((#‘𝑉) ∈ ℕ0 → (3 < (#‘𝑉) → (#‘𝑉) ≠ 0))
19 hasheq0 12967 . . . . . . . . . . . . . . 15 (𝑉 ∈ Fin → ((#‘𝑉) = 0 ↔ 𝑉 = ∅))
2019necon3bid 2825 . . . . . . . . . . . . . 14 (𝑉 ∈ Fin → ((#‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
2120biimpcd 237 . . . . . . . . . . . . 13 ((#‘𝑉) ≠ 0 → (𝑉 ∈ Fin → 𝑉 ≠ ∅))
2218, 21syl6 34 . . . . . . . . . . . 12 ((#‘𝑉) ∈ ℕ0 → (3 < (#‘𝑉) → (𝑉 ∈ Fin → 𝑉 ≠ ∅)))
2322com23 83 . . . . . . . . . . 11 ((#‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (3 < (#‘𝑉) → 𝑉 ≠ ∅)))
243, 23mpcom 37 . . . . . . . . . 10 (𝑉 ∈ Fin → (3 < (#‘𝑉) → 𝑉 ≠ ∅))
2524a1i 11 . . . . . . . . 9 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (3 < (#‘𝑉) → 𝑉 ≠ ∅)))
26253imp 1248 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → 𝑉 ≠ ∅)
271, 2, 263jca 1234 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
2827ad2antrl 759 . . . . . 6 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
29 simpl 471 . . . . . 6 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → 𝐺 RegUSGraph 𝑘)
30 av-frgrareggt1.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3130av-frgraregord13 41552 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝑘) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
3228, 29, 31syl2anc 690 . . . . 5 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
33 1red 9911 . . . . . . . . . . . . 13 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 1 ∈ ℝ)
345a1i 11 . . . . . . . . . . . . . 14 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 3 ∈ ℝ)
357adantr 479 . . . . . . . . . . . . . 14 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → (#‘𝑉) ∈ ℝ)
36 1lt3 11043 . . . . . . . . . . . . . . 15 1 < 3
3736a1i 11 . . . . . . . . . . . . . 14 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 1 < 3)
3833, 34, 35, 37, 12lttrd 10049 . . . . . . . . . . . . 13 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → 1 < (#‘𝑉))
3933, 38gtned 10023 . . . . . . . . . . . 12 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → (#‘𝑉) ≠ 1)
40 eqneqall 2792 . . . . . . . . . . . 12 ((#‘𝑉) = 1 → ((#‘𝑉) ≠ 1 → ¬ 𝐺 RegUSGraph 𝑘))
4139, 40syl5com 31 . . . . . . . . . . 11 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → ((#‘𝑉) = 1 → ¬ 𝐺 RegUSGraph 𝑘))
42 ltne 9985 . . . . . . . . . . . . 13 ((3 ∈ ℝ ∧ 3 < (#‘𝑉)) → (#‘𝑉) ≠ 3)
436, 42sylan 486 . . . . . . . . . . . 12 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → (#‘𝑉) ≠ 3)
44 eqneqall 2792 . . . . . . . . . . . 12 ((#‘𝑉) = 3 → ((#‘𝑉) ≠ 3 → ¬ 𝐺 RegUSGraph 𝑘))
4543, 44syl5com 31 . . . . . . . . . . 11 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → ((#‘𝑉) = 3 → ¬ 𝐺 RegUSGraph 𝑘))
4641, 45jaod 393 . . . . . . . . . 10 (((#‘𝑉) ∈ ℕ0 ∧ 3 < (#‘𝑉)) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
4746ex 448 . . . . . . . . 9 ((#‘𝑉) ∈ ℕ0 → (3 < (#‘𝑉) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘)))
483, 47syl 17 . . . . . . . 8 (𝑉 ∈ Fin → (3 < (#‘𝑉) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘)))
4948a1i 11 . . . . . . 7 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (3 < (#‘𝑉) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))))
50493imp 1248 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
5150ad2antrl 759 . . . . 5 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → (((#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
5232, 51mpd 15 . . . 4 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → ¬ 𝐺 RegUSGraph 𝑘)
5352ex 448 . . 3 (𝐺 RegUSGraph 𝑘 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘))
54 ax-1 6 . . 3 𝐺 RegUSGraph 𝑘 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘))
5553, 54pm2.61i 174 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘)
5655ralrimiva 2948 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  c0 3873   class class class wbr 4577  cfv 5790  Fincfn 7818  cr 9791  0cc0 9792  1c1 9793   < clt 9930  3c3 10918  0cn0 11139  #chash 12934  Vtxcvtx 40231   RegUSGraph crusgr 40758   FriendGraph cfrgr 41430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-ac2 9145  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ifp 1006  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-ec 7608  df-qs 7612  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-ac 8799  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-xadd 11779  df-ico 12008  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-hash 12935  df-word 13100  df-lsw 13101  df-concat 13102  df-s1 13103  df-substr 13104  df-reps 13107  df-csh 13332  df-s2 13390  df-s3 13391  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-sum 14211  df-dvds 14768  df-gcd 15001  df-prm 15170  df-phi 15255  df-xnn0 40200  df-vtx 40233  df-iedg 40234  df-uhgr 40282  df-ushgr 40283  df-upgr 40310  df-umgr 40311  df-edga 40354  df-uspgr 40382  df-usgr 40383  df-fusgr 40538  df-nbgr 40556  df-vtxdg 40684  df-rgr 40759  df-rusgr 40760  df-1wlks 40802  df-wlks 40803  df-wlkson 40804  df-trls 40903  df-trlson 40904  df-pths 40925  df-spths 40926  df-pthson 40927  df-spthson 40928  df-wwlks 41035  df-wwlksn 41036  df-wwlksnon 41037  df-wspthsn 41038  df-wspthsnon 41039  df-clwwlks 41187  df-clwwlksn 41188  df-conngr 41356  df-frgr 41431
This theorem is referenced by:  av-friendshipgt3  41554
  Copyright terms: Public domain W3C validator