Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-frgraregord13 Structured version   Visualization version   GIF version

Theorem av-frgraregord13 41549
Description: If a nonempty finite friendship graph is 𝐾-regular, then it must have order 1 or 3. Special case of av-frgraregord013 41548. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
av-frgrareggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
av-frgraregord13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))

Proof of Theorem av-frgraregord13
StepHypRef Expression
1 simpl1 1056 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FriendGraph )
2 simpl2 1057 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ∈ Fin)
3 simpr 475 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
4 av-frgrareggt1.v . . . 4 𝑉 = (Vtx‘𝐺)
54av-frgraregord013 41548 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
61, 2, 3, 5syl3anc 1317 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
7 hasheq0 12964 . . . . . . . . 9 (𝑉 ∈ Fin → ((#‘𝑉) = 0 ↔ 𝑉 = ∅))
8 eqneqall 2789 . . . . . . . . 9 (𝑉 = ∅ → (𝑉 ≠ ∅ → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
97, 8syl6bi 241 . . . . . . . 8 (𝑉 ∈ Fin → ((#‘𝑉) = 0 → (𝑉 ≠ ∅ → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))
109com23 83 . . . . . . 7 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))
1110a1i 11 . . . . . 6 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
12113imp 1248 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
1312adantr 479 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
1413com12 32 . . 3 ((#‘𝑉) = 0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
15 orc 398 . . . 4 ((#‘𝑉) = 1 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
1615a1d 25 . . 3 ((#‘𝑉) = 1 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
17 olc 397 . . . 4 ((#‘𝑉) = 3 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
1817a1d 25 . . 3 ((#‘𝑉) = 3 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
1914, 16, 183jaoi 1382 . 2 (((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
206, 19mpcom 37 1 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381  wa 382  w3o 1029  w3a 1030   = wceq 1474  wcel 1976  wne 2776  c0 3870   class class class wbr 4574  cfv 5787  Fincfn 7815  0cc0 9789  1c1 9790  3c3 10915  #chash 12931  Vtxcvtx 40228   RegUSGraph crusgr 40755   FriendGraph cfrgr 41427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-ac2 9142  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ifp 1006  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-disj 4545  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-er 7603  df-ec 7605  df-qs 7609  df-map 7720  df-pm 7721  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-ac 8796  df-cda 8847  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-n0 11137  df-z 11208  df-uz 11517  df-rp 11662  df-xadd 11776  df-ico 12005  df-fz 12150  df-fzo 12287  df-fl 12407  df-mod 12483  df-seq 12616  df-exp 12675  df-hash 12932  df-word 13097  df-lsw 13098  df-concat 13099  df-s1 13100  df-substr 13101  df-reps 13104  df-csh 13329  df-s2 13387  df-s3 13388  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-clim 14010  df-sum 14208  df-dvds 14765  df-gcd 14998  df-prm 15167  df-phi 15252  df-xnn0 40197  df-vtx 40230  df-iedg 40231  df-uhgr 40279  df-ushgr 40280  df-upgr 40307  df-umgr 40308  df-edga 40351  df-uspgr 40379  df-usgr 40380  df-fusgr 40535  df-nbgr 40553  df-vtxdg 40681  df-rgr 40756  df-rusgr 40757  df-1wlks 40799  df-wlks 40800  df-wlkson 40801  df-trls 40900  df-trlson 40901  df-pths 40922  df-spths 40923  df-pthson 40924  df-spthson 40925  df-wwlks 41032  df-wwlksn 41033  df-wwlksnon 41034  df-wspthsn 41035  df-wspthsnon 41036  df-clwwlks 41184  df-clwwlksn 41185  df-conngr 41353  df-frgr 41428
This theorem is referenced by:  av-frgraogt3nreg  41550
  Copyright terms: Public domain W3C validator