Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-friendship Structured version   Visualization version   GIF version

Theorem av-friendship 41545
Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018.)
Hypothesis
Ref Expression
av-friendship.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
av-friendship ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Distinct variable groups:   𝑣,𝐺,𝑤   𝑣,𝑉,𝑤

Proof of Theorem av-friendship
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1060 . . . 4 ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph )
2 simpr3 1062 . . . 4 ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin)
3 simpl 472 . . . 4 ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 3 < (#‘𝑉))
4 av-friendship.v . . . . 5 𝑉 = (Vtx‘𝐺)
54av-friendshipgt3 41544 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
61, 2, 3, 5syl3anc 1318 . . 3 ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
76ex 449 . 2 (3 < (#‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
8 hashcl 12964 . . . . . . . . 9 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
9 simplr 788 . . . . . . . . . . 11 ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → 𝑉 ∈ Fin)
10 hashge1 12994 . . . . . . . . . . . 12 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 1 ≤ (#‘𝑉))
1110ad2ant2l 778 . . . . . . . . . . 11 ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → 1 ≤ (#‘𝑉))
12 nn0re 11151 . . . . . . . . . . . . . . . . 17 ((#‘𝑉) ∈ ℕ0 → (#‘𝑉) ∈ ℝ)
13 3re 10944 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
14 lenlt 9968 . . . . . . . . . . . . . . . . 17 (((#‘𝑉) ∈ ℝ ∧ 3 ∈ ℝ) → ((#‘𝑉) ≤ 3 ↔ ¬ 3 < (#‘𝑉)))
1512, 13, 14sylancl 693 . . . . . . . . . . . . . . . 16 ((#‘𝑉) ∈ ℕ0 → ((#‘𝑉) ≤ 3 ↔ ¬ 3 < (#‘𝑉)))
1615biimprd 237 . . . . . . . . . . . . . . 15 ((#‘𝑉) ∈ ℕ0 → (¬ 3 < (#‘𝑉) → (#‘𝑉) ≤ 3))
1716adantr 480 . . . . . . . . . . . . . 14 (((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) → (¬ 3 < (#‘𝑉) → (#‘𝑉) ≤ 3))
1817com12 32 . . . . . . . . . . . . 13 (¬ 3 < (#‘𝑉) → (((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) → (#‘𝑉) ≤ 3))
1918adantr 480 . . . . . . . . . . . 12 ((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) → (((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) → (#‘𝑉) ≤ 3))
2019impcom 445 . . . . . . . . . . 11 ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → (#‘𝑉) ≤ 3)
219, 11, 203jca 1235 . . . . . . . . . 10 ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3))
2221exp31 628 . . . . . . . . 9 ((#‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → ((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3))))
238, 22mpcom 37 . . . . . . . 8 (𝑉 ∈ Fin → ((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3)))
2423impcom 445 . . . . . . 7 (((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3))
25 hash1to3 13081 . . . . . . 7 ((𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
26 vex 3176 . . . . . . . . . 10 𝑎 ∈ V
27 eqid 2610 . . . . . . . . . . 11 (Edg‘𝐺) = (Edg‘𝐺)
284, 271to3vfriendship-av 41443 . . . . . . . . . 10 ((𝑎 ∈ V ∧ (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
2926, 28mpan 702 . . . . . . . . 9 ((𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3029exlimiv 1845 . . . . . . . 8 (∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3130exlimivv 1847 . . . . . . 7 (∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3224, 25, 313syl 18 . . . . . 6 (((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3332exp31 628 . . . . 5 (¬ 3 < (#‘𝑉) → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
3433com14 94 . . . 4 (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ 3 < (#‘𝑉) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
35343imp 1249 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → (¬ 3 < (#‘𝑉) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3635com12 32 . 2 (¬ 3 < (#‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
377, 36pm2.61i 175 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3o 1030  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  c0 3874  {csn 4125  {cpr 4127  {ctp 4129   class class class wbr 4578  cfv 5790  Fincfn 7819  cr 9792  1c1 9794   < clt 9931  cle 9932  3c3 10921  0cn0 11142  #chash 12937  Vtxcvtx 40221  Edgcedga 40343   FriendGraph cfrgr 41420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-ac2 9146  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-disj 4549  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-3o 7427  df-oadd 7429  df-er 7607  df-ec 7609  df-qs 7613  df-map 7724  df-pm 7725  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-ac 8800  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-xadd 11782  df-ico 12011  df-fz 12156  df-fzo 12293  df-fl 12413  df-mod 12489  df-seq 12622  df-exp 12681  df-hash 12938  df-word 13103  df-lsw 13104  df-concat 13105  df-s1 13106  df-substr 13107  df-reps 13110  df-csh 13335  df-s2 13393  df-s3 13394  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-sum 14214  df-dvds 14771  df-gcd 15004  df-prm 15173  df-phi 15258  df-xnn0 40190  df-vtx 40223  df-iedg 40224  df-uhgr 40272  df-ushgr 40273  df-upgr 40300  df-umgr 40301  df-edga 40344  df-uspgr 40372  df-usgr 40373  df-fusgr 40528  df-nbgr 40546  df-vtxdg 40674  df-rgr 40749  df-rusgr 40750  df-1wlks 40792  df-wlks 40793  df-wlkson 40794  df-trls 40893  df-trlson 40894  df-pths 40915  df-spths 40916  df-pthson 40917  df-spthson 40918  df-wwlks 41025  df-wwlksn 41026  df-wwlksnon 41027  df-wspthsn 41028  df-wspthsnon 41029  df-clwwlks 41177  df-clwwlksn 41178  df-conngr 41346  df-frgr 41421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator