Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwlk1lem2 Structured version   Visualization version   GIF version

Theorem av-numclwlk1lem2 41508
Description: There is a bijection between the set of closed walks (having a fixed length greater than 2 and starting at a fixed vertex) with the last but 2 vertex identical with the first (and therefore last) vertex and the set of closed walks (having a fixed length less by 2 and starting at the same vertex) and the neighbors of this vertex. (Contributed by Alexander van der Vekens, 6-Jul-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
av-extwwlkfab.v 𝑉 = (Vtx‘𝐺)
av-extwwlkfab.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
av-extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
Assertion
Ref Expression
av-numclwlk1lem2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝐶,𝑓,𝑤   𝑓,𝐹   𝑓,𝐺   𝑓,𝑁   𝑓,𝑋
Allowed substitution hints:   𝐶(𝑣,𝑛)   𝐹(𝑣,𝑛)   𝑉(𝑓)

Proof of Theorem av-numclwlk1lem2
StepHypRef Expression
1 ovex 6554 . . 3 (𝑋𝐶𝑁) ∈ V
21mptex 6367 . 2 (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩) ∈ V
3 av-extwwlkfab.v . . 3 𝑉 = (Vtx‘𝐺)
4 av-extwwlkfab.f . . 3 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
5 av-extwwlkfab.c . . 3 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
6 eqid 2609 . . 3 (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩) = (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩)
73, 4, 5, 6av-numclwlk1lem2f1o 41507 . 2 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩):(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
8 f1oeq1 6024 . . 3 (𝑓 = (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩) → (𝑓:(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)) ↔ (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩):(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋))))
98spcegv 3266 . 2 ((𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩) ∈ V → ((𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩):(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋))))
102, 7, 9mpsyl 65 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1976  {crab 2899  Vcvv 3172  cop 4130  cmpt 4637   × cxp 5025  1-1-ontowf1o 5788  cfv 5789  (class class class)co 6526  cmpt2 6528  0cc0 9792  1c1 9793  cmin 10117  cn 10869  2c2 10919  3c3 10920  cuz 11521   substr csubstr 13098  Vtxcvtx 40210   USGraph cusgr 40360   NeighbVtx cnbgr 40531   ClWWalkSN cclwwlksn 41165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-rp 11667  df-fz 12155  df-fzo 12292  df-hash 12937  df-word 13102  df-lsw 13103  df-concat 13104  df-s1 13105  df-substr 13106  df-s2 13392  df-upgr 40289  df-umgr 40290  df-edga 40333  df-usgr 40362  df-nbgr 40535  df-clwwlks 41166  df-clwwlksn 41167
This theorem is referenced by:  av-numclwwlk1  41509
  Copyright terms: Public domain W3C validator