Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwlk1lem2fv Structured version   Visualization version   GIF version

Theorem av-numclwlk1lem2fv 41515
Description: Value of the function 𝑇. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
av-extwwlkfab.v 𝑉 = (Vtx‘𝐺)
av-extwwlkfab.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
av-extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
av-numclwwlk.t 𝑇 = (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩)
Assertion
Ref Expression
av-numclwlk1lem2fv (𝑃 ∈ (𝑋𝐶𝑁) → (𝑇𝑃) = ⟨(𝑃 substr ⟨0, (𝑁 − 2)⟩), (𝑃‘(𝑁 − 1))⟩)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑤,𝑃   𝑤,𝐶
Allowed substitution hints:   𝐶(𝑣,𝑛)   𝑃(𝑣,𝑛)   𝑇(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem av-numclwlk1lem2fv
StepHypRef Expression
1 av-numclwwlk.t . . 3 𝑇 = (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩)
21a1i 11 . 2 (𝑃 ∈ (𝑋𝐶𝑁) → 𝑇 = (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩))
3 oveq1 6534 . . . 4 (𝑤 = 𝑃 → (𝑤 substr ⟨0, (𝑁 − 2)⟩) = (𝑃 substr ⟨0, (𝑁 − 2)⟩))
4 fveq1 6087 . . . 4 (𝑤 = 𝑃 → (𝑤‘(𝑁 − 1)) = (𝑃‘(𝑁 − 1)))
53, 4opeq12d 4343 . . 3 (𝑤 = 𝑃 → ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩ = ⟨(𝑃 substr ⟨0, (𝑁 − 2)⟩), (𝑃‘(𝑁 − 1))⟩)
65adantl 481 . 2 ((𝑃 ∈ (𝑋𝐶𝑁) ∧ 𝑤 = 𝑃) → ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩ = ⟨(𝑃 substr ⟨0, (𝑁 − 2)⟩), (𝑃‘(𝑁 − 1))⟩)
7 id 22 . 2 (𝑃 ∈ (𝑋𝐶𝑁) → 𝑃 ∈ (𝑋𝐶𝑁))
8 opex 4853 . . 3 ⟨(𝑃 substr ⟨0, (𝑁 − 2)⟩), (𝑃‘(𝑁 − 1))⟩ ∈ V
98a1i 11 . 2 (𝑃 ∈ (𝑋𝐶𝑁) → ⟨(𝑃 substr ⟨0, (𝑁 − 2)⟩), (𝑃‘(𝑁 − 1))⟩ ∈ V)
102, 6, 7, 9fvmptd 6182 1 (𝑃 ∈ (𝑋𝐶𝑁) → (𝑇𝑃) = ⟨(𝑃 substr ⟨0, (𝑁 − 2)⟩), (𝑃‘(𝑁 − 1))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cop 4131  cmpt 4638  cfv 5790  (class class class)co 6527  cmpt2 6529  0cc0 9793  1c1 9794  cmin 10118  cn 10870  2c2 10920  cuz 11522   substr csubstr 13099  Vtxcvtx 40221   ClWWalkSN cclwwlksn 41176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-iota 5754  df-fun 5792  df-fv 5798  df-ov 6530
This theorem is referenced by:  av-numclwlk1lem2f1  41516  av-numclwlk1lem2fo  41517
  Copyright terms: Public domain W3C validator