Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwlk2lem2f Structured version   Visualization version   GIF version

Theorem av-numclwlk2lem2f 41531
Description: 𝑅 is a function mapping the "closed (n+2)-walks v(0) ... v(n-2) v(n-1) v(n) v(n+1) v(n+2) starting at 𝑋 = v(0) = v(n+2) with v(n) =/= X" to the words representing the prefix v(0) ... v(n-2) v(n-1) v(n) of the walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 31-May-2021.)
Hypotheses
Ref Expression
av-numclwwlk.v 𝑉 = (Vtx‘𝐺)
av-numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
av-numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
av-numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
av-numclwwlk.r 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
Assertion
Ref Expression
av-numclwlk2lem2f ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑥,𝐺,𝑤   𝑥,𝐻   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑅(𝑥,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)

Proof of Theorem av-numclwlk2lem2f
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
2 2nn 11028 . . . . . . . . . . 11 2 ∈ ℕ
32a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℕ)
41, 3nnaddcld 10910 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
54anim2i 590 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
653adant1 1071 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
7 av-numclwwlk.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
8 av-numclwwlk.q . . . . . . . . 9 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
9 av-numclwwlk.f . . . . . . . . 9 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
10 av-numclwwlk.h . . . . . . . . 9 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
117, 8, 9, 10av-numclwwlkovh 41529 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
1211eleq2d 2668 . . . . . . 7 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
136, 12syl 17 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
14 fveq1 6083 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1514eqeq1d 2607 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋))
16 fveq1 6083 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2)))
1716, 14neeq12d 2838 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))
1815, 17anbi12d 742 . . . . . . 7 (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1918elrab 3326 . . . . . 6 (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
2013, 19syl6bb 274 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
21 peano2nn 10875 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
22 nnz 11228 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
23 2z 11238 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
2423a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 2 ∈ ℤ)
2522, 24zaddcld 11314 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℤ)
26 uzid 11530 . . . . . . . . . . . . . 14 ((𝑁 + 2) ∈ ℤ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
2725, 26syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
28 nncn 10871 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
29 1cnd 9908 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3028, 29, 29addassd 9914 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
31 1p1e2 10977 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
3231a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (1 + 1) = 2)
3332oveq2d 6539 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 + (1 + 1)) = (𝑁 + 2))
3430, 33eqtrd 2639 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + 2))
3534fveq2d 6088 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (ℤ‘((𝑁 + 1) + 1)) = (ℤ‘(𝑁 + 2)))
3627, 35eleqtrrd 2686 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1)))
3721, 36jca 552 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
38373ad2ant3 1076 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
3938adantr 479 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
40 simprl 789 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → 𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺))
41 wwlksubclwwlks 41230 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))) → (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalkSN 𝐺)))
4239, 40, 41sylc 62 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalkSN 𝐺))
43 pncan1 10301 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
4443eqcomd 2611 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → 𝑁 = ((𝑁 + 1) − 1))
4528, 44syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
4645oveq1d 6538 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 WWalkSN 𝐺) = (((𝑁 + 1) − 1) WWalkSN 𝐺))
4746eleq2d 2668 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalkSN 𝐺)))
48473ad2ant3 1076 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalkSN 𝐺)))
4948adantr 479 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalkSN 𝐺)))
5042, 49mpbird 245 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺))
517clwwlknbp0 41190 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) → ((𝐺 ∈ V ∧ (𝑁 + 2) ∈ ℕ) ∧ (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = (𝑁 + 2))))
52 simprl 789 . . . . . . . . . . . . . . . 16 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥‘0) = 𝑋)
53 simprr 791 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉)
54 nnnn0 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
55 peano2nn0 11176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
57 nnre 10870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5857lep1d 10800 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
59 elfz2nn0 12251 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ (0...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0𝑁 ≤ (𝑁 + 1)))
6054, 56, 58, 59syl3anbrc 1238 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(𝑁 + 1)))
61 2cnd 10936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 2 ∈ ℂ)
62 addsubass 10138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
63 2m1e1 10978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (2 − 1) = 1
6463oveq2i 6534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 + (2 − 1)) = (𝑁 + 1)
6562, 64syl6eq 2655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + 1))
6628, 61, 29, 65syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
6766oveq2d 6539 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (0...((𝑁 + 2) − 1)) = (0...(𝑁 + 1)))
6860, 67eleqtrrd 2686 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((𝑁 + 2) − 1)))
69 elfzp1b 12237 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℤ ∧ (𝑁 + 2) ∈ ℤ) → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7022, 25, 69syl2anc 690 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7168, 70mpbid 220 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
7271adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
73 oveq2 6531 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝑥) = (𝑁 + 2) → (1...(#‘𝑥)) = (1...(𝑁 + 2)))
7473eleq2d 2668 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑥) = (𝑁 + 2) → ((𝑁 + 1) ∈ (1...(#‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7574ad2antrl 759 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑁 + 1) ∈ (1...(#‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7672, 75mpbird 245 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(#‘𝑥)))
77 swrd0fv0 13234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(#‘𝑥))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7853, 76, 77syl2anc 690 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7978ex 448 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0)))
8079adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑉𝑁 ∈ ℕ) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0)))
8180impcom 444 . . . . . . . . . . . . . . . . . . 19 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
8281ad2antrl 759 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
83 simpl 471 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥‘0) = 𝑋)
8482, 83eqtrd 2639 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋)
85 swrd0fvlsw 13237 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(#‘𝑥))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) = (𝑥‘((𝑁 + 1) − 1)))
8653, 76, 85syl2anc 690 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) = (𝑥‘((𝑁 + 1) − 1)))
8728, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
8828, 61pncand 10240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
8987, 88eqtr4d 2642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 + 2) − 2))
9089fveq2d 6088 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
9190adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
9286, 91eqtr2d 2640 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
9392ex 448 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩))))
9493adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑉𝑁 ∈ ℕ) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩))))
9594impcom 444 . . . . . . . . . . . . . . . . . . . . . . 23 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
9695neeq1d 2836 . . . . . . . . . . . . . . . . . . . . . 22 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9796biimpcd 237 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) → ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9897adantl 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9998impcom 444 . . . . . . . . . . . . . . . . . . 19 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0))
10099adantl 480 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0))
101 neeq2 2840 . . . . . . . . . . . . . . . . . . . 20 (𝑋 = (𝑥‘0) → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
102101eqcoms 2613 . . . . . . . . . . . . . . . . . . 19 ((𝑥‘0) = 𝑋 → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
103102adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
104100, 103mpbird 245 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)
10584, 104jca 552 . . . . . . . . . . . . . . . 16 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
10652, 105mpancom 699 . . . . . . . . . . . . . . 15 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
107106exp31 627 . . . . . . . . . . . . . 14 (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
108107com23 83 . . . . . . . . . . . . 13 (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
109108ancoms 467 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = (𝑁 + 2)) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
11051, 109simpl2im 655 . . . . . . . . . . 11 (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
111110imp 443 . . . . . . . . . 10 ((𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
112111com12 32 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
1131123adant1 1071 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
114113imp 443 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
11550, 114jca 552 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
116115ex 448 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
11720, 116sylbid 228 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
118117imp 443 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
119 3simpc 1052 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉𝑁 ∈ ℕ))
120119adantr 479 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑉𝑁 ∈ ℕ))
1217, 8av-numclwwlkovq 41527 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
122120, 121syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
123122eleq2d 2668 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}))
124 fveq1 6083 . . . . . . 7 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (𝑤‘0) = ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0))
125124eqeq1d 2607 . . . . . 6 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → ((𝑤‘0) = 𝑋 ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋))
126 fveq2 6084 . . . . . . 7 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → ( lastS ‘𝑤) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
127126neeq1d 2836 . . . . . 6 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (( lastS ‘𝑤) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
128125, 127anbi12d 742 . . . . 5 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋) ↔ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
129128elrab 3326 . . . 4 ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)} ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
130123, 129syl6bb 274 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalkSN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
131118, 130mpbird 245 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
132 av-numclwwlk.r . 2 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
133131, 132fmptd 6273 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2775  {crab 2895  Vcvv 3168  cop 4126   class class class wbr 4573  cmpt 4633  wf 5782  cfv 5786  (class class class)co 6523  cmpt2 6525  cc 9786  0cc0 9788  1c1 9789   + caddc 9791  cle 9927  cmin 10113  cn 10863  2c2 10913  0cn0 11135  cz 11206  cuz 11515  ...cfz 12148  #chash 12930  Word cword 13088   lastS clsw 13089   substr csubstr 13092  Vtxcvtx 40227   WWalkSN cwwlksn 41027   ClWWalkSN cclwwlksn 41182   FriendGraph cfrgr 41426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-er 7602  df-map 7719  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-fzo 12286  df-hash 12931  df-word 13096  df-lsw 13097  df-substr 13100  df-wwlks 41031  df-wwlksn 41032  df-clwwlks 41183  df-clwwlksn 41184
This theorem is referenced by:  av-numclwlk2lem2f1o  41533
  Copyright terms: Public domain W3C validator