Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwwlk2lem1 Structured version   Visualization version   GIF version

Theorem av-numclwwlk2lem1 41534
Description: In a friendship graph, for each walk of length 𝑛 starting at a fixed vertex 𝑣 and ending not at this vertex, there is a unique vertex so that the walk extended by an edge to this vertex and an edge from this vertex to the first vertex of the walk is a value of operation 𝐻. If the walk is represented as a word, it is sufficient to add one vertex to the word to obtain the closed walk contained in the value of operation 𝐻, since in a word representing a closed walk the starting vertex is not repeated at the end. This theorem generally holds only for Friendship Graphs, because these guarantee that for the first and last vertex there is a (unique) third vertex "in between". (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 30-May-2021.)
Hypotheses
Ref Expression
av-numclwwlk.v 𝑉 = (Vtx‘𝐺)
av-numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
av-numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
av-numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
Assertion
Ref Expression
av-numclwwlk2lem1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑣,𝑊,𝑤
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝐹(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝑊(𝑛)

Proof of Theorem av-numclwwlk2lem1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 av-numclwwlk.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 av-numclwwlk.q . . . . . 6 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
31, 2av-numclwwlkovq 41531 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
433adant1 1071 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
54eleq2d 2672 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}))
6 fveq1 6087 . . . . . 6 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
76eqeq1d 2611 . . . . 5 (𝑤 = 𝑊 → ((𝑤‘0) = 𝑋 ↔ (𝑊‘0) = 𝑋))
8 fveq2 6088 . . . . . 6 (𝑤 = 𝑊 → ( lastS ‘𝑤) = ( lastS ‘𝑊))
98neeq1d 2840 . . . . 5 (𝑤 = 𝑊 → (( lastS ‘𝑤) ≠ 𝑋 ↔ ( lastS ‘𝑊) ≠ 𝑋))
107, 9anbi12d 742 . . . 4 (𝑤 = 𝑊 → (((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋) ↔ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)))
1110elrab 3330 . . 3 (𝑊 ∈ {𝑤 ∈ (𝑁 WWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)} ↔ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)))
125, 11syl6bb 274 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))))
13 simpl1 1056 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → 𝐺 ∈ FriendGraph )
14 eqid 2609 . . . . . . . . . . . . 13 (Edg‘𝐺) = (Edg‘𝐺)
151, 14wwlknp 41047 . . . . . . . . . . . 12 (𝑊 ∈ (𝑁 WWalkSN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
16 peano2nn 10879 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
1716adantl 480 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
18 simpl 471 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)))
1917, 18jca 552 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1))))
2019ex 448 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)))))
21203adant3 1073 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)))))
2215, 21syl 17 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 WWalkSN 𝐺) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)))))
23 lswlgt0cl 13155 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1))) → ( lastS ‘𝑊) ∈ 𝑉)
2422, 23syl6 34 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalkSN 𝐺) → (𝑁 ∈ ℕ → ( lastS ‘𝑊) ∈ 𝑉))
2524adantr 479 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑁 ∈ ℕ → ( lastS ‘𝑊) ∈ 𝑉))
2625com12 32 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ( lastS ‘𝑊) ∈ 𝑉))
27263ad2ant3 1076 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ( lastS ‘𝑊) ∈ 𝑉))
2827imp 443 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ( lastS ‘𝑊) ∈ 𝑉)
29 eleq1 2675 . . . . . . . . . . 11 ((𝑊‘0) = 𝑋 → ((𝑊‘0) ∈ 𝑉𝑋𝑉))
3029biimprd 236 . . . . . . . . . 10 ((𝑊‘0) = 𝑋 → (𝑋𝑉 → (𝑊‘0) ∈ 𝑉))
3130ad2antrl 759 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑋𝑉 → (𝑊‘0) ∈ 𝑉))
3231com12 32 . . . . . . . 8 (𝑋𝑉 → ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉))
33323ad2ant2 1075 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉))
3433imp 443 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → (𝑊‘0) ∈ 𝑉)
35 neeq2 2844 . . . . . . . . . 10 (𝑋 = (𝑊‘0) → (( lastS ‘𝑊) ≠ 𝑋 ↔ ( lastS ‘𝑊) ≠ (𝑊‘0)))
3635eqcoms 2617 . . . . . . . . 9 ((𝑊‘0) = 𝑋 → (( lastS ‘𝑊) ≠ 𝑋 ↔ ( lastS ‘𝑊) ≠ (𝑊‘0)))
3736biimpa 499 . . . . . . . 8 (((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋) → ( lastS ‘𝑊) ≠ (𝑊‘0))
3837adantl 480 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ( lastS ‘𝑊) ≠ (𝑊‘0))
3938adantl 480 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ( lastS ‘𝑊) ≠ (𝑊‘0))
4028, 34, 393jca 1234 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → (( lastS ‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ ( lastS ‘𝑊) ≠ (𝑊‘0)))
411, 14frcond2 41441 . . . . 5 (𝐺 ∈ FriendGraph → ((( lastS ‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ ( lastS ‘𝑊) ≠ (𝑊‘0)) → ∃!𝑣𝑉 ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))))
4213, 40, 41sylc 62 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ∃!𝑣𝑉 ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
43 simpl 471 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → 𝑊 ∈ (𝑁 WWalkSN 𝐺))
4443ad2antlr 758 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑊 ∈ (𝑁 WWalkSN 𝐺))
45 simpr 475 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑣𝑉)
46 nnnn0 11146 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
47463ad2ant3 1076 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
4847ad2antrr 757 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑁 ∈ ℕ0)
4944, 45, 483jca 1234 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0))
501, 14wwlksext2clwwlk 41233 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0) → (({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺)))
5150imp 443 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0) ∧ ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺))
5249, 51sylan 486 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺))
531wwlknbp 41046 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 WWalkSN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
5453simp3d 1067 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalkSN 𝐺) → 𝑊 ∈ Word 𝑉)
5554ad2antrl 759 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → 𝑊 ∈ Word 𝑉)
5655ad2antrr 757 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺)) → 𝑊 ∈ Word 𝑉)
5745adantr 479 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺)) → 𝑣𝑉)
58 2z 11242 . . . . . . . . . . 11 2 ∈ ℤ
59 nn0pzuz 11577 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁 + 2) ∈ (ℤ‘2))
6046, 58, 59sylancl 692 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘2))
61603ad2ant3 1076 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑁 + 2) ∈ (ℤ‘2))
6261ad3antrrr 761 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺)) → (𝑁 + 2) ∈ (ℤ‘2))
63 simpr 475 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺))
641, 14clwwlksext2edg 41232 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑣𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺)) → ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
6556, 57, 62, 63, 64syl31anc 1320 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺)) → ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
6652, 65impbida 872 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺)))
6747adantr 479 . . . . . . . . . . 11 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → 𝑁 ∈ ℕ0)
681eleq2i 2679 . . . . . . . . . . . 12 (𝑣𝑉𝑣 ∈ (Vtx‘𝐺))
6968biimpi 204 . . . . . . . . . . 11 (𝑣𝑉𝑣 ∈ (Vtx‘𝐺))
7067, 69anim12i 587 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑁 ∈ ℕ0𝑣 ∈ (Vtx‘𝐺)))
7137anim2i 590 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ( lastS ‘𝑊) ≠ (𝑊‘0)))
7271ad2antlr 758 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ( lastS ‘𝑊) ≠ (𝑊‘0)))
73 av-clwwlkextfrlem1 41511 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑣 ∈ (Vtx‘𝐺)) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ( lastS ‘𝑊) ≠ (𝑊‘0))) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
7470, 72, 73syl2anc 690 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
75 eqeq2 2620 . . . . . . . . . . . . 13 (𝑋 = (𝑊‘0) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7675eqcoms 2617 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7776ad2antrl 759 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7877ad2antlr 758 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7974simpld 473 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0))
8079neeq2d 2841 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
8178, 80anbi12d 742 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0))))
8274, 81mpbird 245 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
83 nncn 10875 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
84 2cnd 10940 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 2 ∈ ℂ)
8583, 84pncand 10244 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
86853ad2ant3 1076 . . . . . . . . . . . 12 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 2) − 2) = 𝑁)
8786ad2antrr 757 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑁 + 2) − 2) = 𝑁)
8887fveq2d 6092 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) = ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁))
8988neeq1d 2840 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
9089anbi2d 735 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
9182, 90mpbird 245 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
9291biantrud 526 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ↔ ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))))
93 2nn 11032 . . . . . . . . . . . . 13 2 ∈ ℕ
94 nnaddcl 10889 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 ∈ ℕ) → (𝑁 + 2) ∈ ℕ)
9593, 94mpan2 702 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
9695anim2i 590 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
97963adant1 1071 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
9897ad2antrr 757 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
99 av-numclwwlk.f . . . . . . . . . 10 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
100 av-numclwwlk.h . . . . . . . . . 10 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
1011, 2, 99, 100av-numclwwlkovh 41533 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
10298, 101syl 17 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
103102eleq2d 2672 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
104 fveq1 6087 . . . . . . . . . 10 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤‘0) = ((𝑊 ++ ⟨“𝑣”⟩)‘0))
105104eqeq1d 2611 . . . . . . . . 9 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ((𝑤‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋))
106 fveq1 6087 . . . . . . . . . 10 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤‘((𝑁 + 2) − 2)) = ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)))
107106, 104neeq12d 2842 . . . . . . . . 9 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
108105, 107anbi12d 742 . . . . . . . 8 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
109108elrab 3330 . . . . . . 7 ((𝑊 ++ ⟨“𝑣”⟩) ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
110103, 109syl6rbb 275 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalkSN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
11166, 92, 1103bitrd 292 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
112111reubidva 3101 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → (∃!𝑣𝑉 ({( lastS ‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
11342, 112mpbid 220 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋))) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)))
114113ex 448 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalkSN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ ( lastS ‘𝑊) ≠ 𝑋)) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
11512, 114sylbid 228 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  ∃!wreu 2897  {crab 2899  Vcvv 3172  {cpr 4126  cfv 5790  (class class class)co 6527  cmpt2 6529  0cc0 9792  1c1 9793   + caddc 9795  cmin 10117  cn 10867  2c2 10917  0cn0 11139  cz 11210  cuz 11519  ..^cfzo 12289  #chash 12934  Word cword 13092   lastS clsw 13093   ++ cconcat 13094  ⟨“cs1 13095  Vtxcvtx 40231  Edgcedga 40353   WWalkSN cwwlksn 41031   ClWWalkSN cclwwlksn 41186   FriendGraph cfrgr 41430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fz 12153  df-fzo 12290  df-hash 12935  df-word 13100  df-lsw 13101  df-concat 13102  df-s1 13103  df-wwlks 41035  df-wwlksn 41036  df-clwwlks 41187  df-clwwlksn 41188  df-frgr 41431
This theorem is referenced by:  av-numclwlk2lem2f1o  41537
  Copyright terms: Public domain W3C validator