Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwwlk6 Structured version   Visualization version   GIF version

Theorem av-numclwwlk6 41542
Description: For a prime divisor 𝑃 of 𝐾 − 1, the total number of closed walks of length 𝑃 in a 𝐾-regular friendship graph is equal modulo 𝑃 to the number of vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
av-numclwwlk6.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
av-numclwwlk6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑃 ClWWalkSN 𝐺)) mod 𝑃) = ((#‘𝑉) mod 𝑃))

Proof of Theorem av-numclwwlk6
Dummy variables 𝑛 𝑢 𝑣 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 av-numclwwlk6.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21finrusgrfusgr 40763 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
323adant2 1072 . . . 4 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
4 prmnn 15168 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
54adantr 479 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
6 eqid 2605 . . . . 5 (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
71, 6av-numclwwlk4 41538 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑃 ∈ ℕ) → (#‘(𝑃 ClWWalkSN 𝐺)) = Σ𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)))
83, 5, 7syl2an 492 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑃 ClWWalkSN 𝐺)) = Σ𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)))
98oveq1d 6538 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑃 ClWWalkSN 𝐺)) mod 𝑃) = (Σ𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃))
105adantl 480 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
11 simp3 1055 . . . . 5 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝑉 ∈ Fin)
1211adantr 479 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
1312adantr 479 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑉 ∈ Fin)
14 simpr 475 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑥𝑉)
1510adantr 479 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → 𝑃 ∈ ℕ)
166, 1av-numclwwlkffin 41510 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑥𝑉𝑃 ∈ ℕ) → (𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃) ∈ Fin)
1713, 14, 15, 16syl3anc 1317 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃) ∈ Fin)
18 hashcl 12957 . . . . . . 7 ((𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃) ∈ Fin → (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) ∈ ℕ0)
1917, 18syl 17 . . . . . 6 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) ∈ ℕ0)
2019nn0zd 11308 . . . . 5 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) ∈ ℤ)
2120ralrimiva 2944 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ∀𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) ∈ ℤ)
2210, 12, 21modfsummod 14309 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) = (Σ𝑥𝑉 ((#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) mod 𝑃))
23 simpl 471 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin))
24 simpr 475 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))
2524anim1i 589 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ∧ 𝑥𝑉))
2625ancomd 465 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))))
27 3anass 1034 . . . . . . 7 ((𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑥𝑉 ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))))
2826, 27sylibr 222 . . . . . 6 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))
29 fveq1 6083 . . . . . . . . . . 11 (𝑤 = 𝑢 → (𝑤‘0) = (𝑢‘0))
3029eqeq1d 2607 . . . . . . . . . 10 (𝑤 = 𝑢 → ((𝑤‘0) = 𝑣 ↔ (𝑢‘0) = 𝑣))
3130cbvrabv 3167 . . . . . . . . 9 {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑢‘0) = 𝑣}
3231a1i 11 . . . . . . . 8 ((𝑣𝑉𝑛 ∈ ℕ) → {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑢‘0) = 𝑣})
3332mpt2eq3ia 6592 . . . . . . 7 (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑢 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑢‘0) = 𝑣})
341, 33av-numclwwlk5 41540 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑥𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) = 1)
3523, 28, 34syl2an2r 871 . . . . 5 ((((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ∧ 𝑥𝑉) → ((#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) = 1)
3635sumeq2dv 14223 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 ((#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) = Σ𝑥𝑉 1)
3736oveq1d 6538 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 ((#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
3822, 37eqtrd 2639 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 (#‘(𝑥(𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})𝑃)) mod 𝑃) = (Σ𝑥𝑉 1 mod 𝑃))
39 1cnd 9908 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 1 ∈ ℂ)
40 fsumconst 14306 . . . . 5 ((𝑉 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑥𝑉 1 = ((#‘𝑉) · 1))
4111, 39, 40syl2an 492 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = ((#‘𝑉) · 1))
42 hashcl 12957 . . . . . . . 8 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
4342nn0red 11195 . . . . . . 7 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℝ)
44 ax-1rid 9858 . . . . . . 7 ((#‘𝑉) ∈ ℝ → ((#‘𝑉) · 1) = (#‘𝑉))
4543, 44syl 17 . . . . . 6 (𝑉 ∈ Fin → ((#‘𝑉) · 1) = (#‘𝑉))
46453ad2ant3 1076 . . . . 5 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((#‘𝑉) · 1) = (#‘𝑉))
4746adantr 479 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘𝑉) · 1) = (#‘𝑉))
4841, 47eqtrd 2639 . . 3 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → Σ𝑥𝑉 1 = (#‘𝑉))
4948oveq1d 6538 . 2 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (Σ𝑥𝑉 1 mod 𝑃) = ((#‘𝑉) mod 𝑃))
509, 38, 493eqtrd 2643 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑃 ClWWalkSN 𝐺)) mod 𝑃) = ((#‘𝑉) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1975  {crab 2895   class class class wbr 4573  cfv 5786  (class class class)co 6523  cmpt2 6525  Fincfn 7814  cc 9786  cr 9787  0cc0 9788  1c1 9789   · cmul 9793  cmin 10113  cn 10863  0cn0 11135  cz 11206   mod cmo 12481  #chash 12930  Σcsu 14206  cdvds 14763  cprime 15165  Vtxcvtx 40227   FinUSGraph cfusgr 40533   RegUSGraph crusgr 40754   ClWWalkSN cclwwlksn 41182   FriendGraph cfrgr 41426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-disj 4544  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-xadd 11775  df-fz 12149  df-fzo 12286  df-fl 12406  df-mod 12482  df-seq 12615  df-exp 12674  df-hash 12931  df-word 13096  df-lsw 13097  df-concat 13098  df-s1 13099  df-substr 13100  df-s2 13386  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-sum 14207  df-dvds 14764  df-gcd 14997  df-prm 15166  df-phi 15251  df-xnn0 40196  df-vtx 40229  df-iedg 40230  df-uhgr 40278  df-ushgr 40279  df-upgr 40306  df-umgr 40307  df-edga 40350  df-uspgr 40378  df-usgr 40379  df-fusgr 40534  df-nbgr 40552  df-vtxdg 40680  df-rgr 40755  df-rusgr 40756  df-wwlks 41031  df-wwlksn 41032  df-clwwlks 41183  df-clwwlksn 41184  df-frgr 41427
This theorem is referenced by:  av-numclwwlk7  41543
  Copyright terms: Public domain W3C validator