Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwwlkffin Structured version   Visualization version   GIF version

Theorem av-numclwwlkffin 41514
Description: In a finite graph, the value of operation 𝐹 is also finite. (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 28-May-2021.)
Hypotheses
Ref Expression
av-numclwwlkovf.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
av-numclwwlkffin.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
av-numclwwlkffin ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐹𝑁) ∈ Fin)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐹(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem av-numclwwlkffin
StepHypRef Expression
1 av-numclwwlkovf.f . . . 4 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
21av-numclwwlkovf 41513 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑋})
323adant1 1071 . 2 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑋})
4 av-numclwwlkffin.v . . . . . 6 𝑉 = (Vtx‘𝐺)
54eleq1i 2678 . . . . 5 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
65biimpi 204 . . . 4 (𝑉 ∈ Fin → (Vtx‘𝐺) ∈ Fin)
763ad2ant1 1074 . . 3 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ ℕ) → (Vtx‘𝐺) ∈ Fin)
8 clwwlksnfi 41222 . . 3 ((Vtx‘𝐺) ∈ Fin → (𝑁 ClWWalkSN 𝐺) ∈ Fin)
9 rabfi 8047 . . 3 ((𝑁 ClWWalkSN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin)
107, 8, 93syl 18 . 2 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ ℕ) → {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑋} ∈ Fin)
113, 10eqeltrd 2687 1 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐹𝑁) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1030   = wceq 1474  wcel 1976  {crab 2899  cfv 5790  (class class class)co 6527  cmpt2 6529  Fincfn 7818  0cc0 9792  cn 10867  Vtxcvtx 40231   ClWWalkSN cclwwlksn 41186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-seq 12619  df-exp 12678  df-hash 12935  df-word 13100  df-clwwlks 41187  df-clwwlksn 41188
This theorem is referenced by:  av-numclwwlkffin0  41515  av-numclwwlk1  41530  av-numclwwlk3  41541  av-numclwwlk6  41546
  Copyright terms: Public domain W3C validator