MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avglt2 Structured version   Visualization version   GIF version

Theorem avglt2 11463
Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014.)
Assertion
Ref Expression
avglt2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))

Proof of Theorem avglt2
StepHypRef Expression
1 simpr 479 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
21recnd 10260 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
3 2times 11337 . . . 4 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
42, 3syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) = (𝐵 + 𝐵))
54breq2d 4816 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) < (2 · 𝐵) ↔ (𝐴 + 𝐵) < (𝐵 + 𝐵)))
6 readdcl 10211 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
7 2re 11282 . . . . 5 2 ∈ ℝ
8 2pos 11304 . . . . 5 0 < 2
97, 8pm3.2i 470 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
109a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 ∈ ℝ ∧ 0 < 2))
11 ltdivmul 11090 . . 3 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ (𝐴 + 𝐵) < (2 · 𝐵)))
126, 1, 10, 11syl3anc 1477 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ (𝐴 + 𝐵) < (2 · 𝐵)))
13 ltadd1 10687 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐵) < (𝐵 + 𝐵)))
14133anidm23 1532 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐵) < (𝐵 + 𝐵)))
155, 12, 143bitr4rd 301 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128   + caddc 10131   · cmul 10133   < clt 10266   / cdiv 10876  2c2 11262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-2 11271
This theorem is referenced by:  avgle1  11464  geomulcvg  14806  ruclem2  15160  ruclem3  15161  dvferm1lem  23946  dvferm2lem  23948  radcnvle  24373  psercnlem1  24378  pserdvlem1  24380  pserdvlem2  24381  logtayl  24605  iooelexlt  33521  ioomidp  40243  dvbdfbdioolem2  40647  dvbdfbdioo  40648  fourierdlem10  40837  fourierdlem79  40905
  Copyright terms: Public domain W3C validator