Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-cc Structured version   Visualization version   GIF version

Axiom ax-cc 9242
 Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 9284, but is weak enough that it can be proven using DC (see axcc 9265). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.)
Assertion
Ref Expression
ax-cc (𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
Distinct variable group:   𝑥,𝑓,𝑧

Detailed syntax breakdown of Axiom ax-cc
StepHypRef Expression
1 vx . . . 4 setvar 𝑥
21cv 1480 . . 3 class 𝑥
3 com 7050 . . 3 class ω
4 cen 7937 . . 3 class
52, 3, 4wbr 4644 . 2 wff 𝑥 ≈ ω
6 vz . . . . . . 7 setvar 𝑧
76cv 1480 . . . . . 6 class 𝑧
8 c0 3907 . . . . . 6 class
97, 8wne 2791 . . . . 5 wff 𝑧 ≠ ∅
10 vf . . . . . . . 8 setvar 𝑓
1110cv 1480 . . . . . . 7 class 𝑓
127, 11cfv 5876 . . . . . 6 class (𝑓𝑧)
1312, 7wcel 1988 . . . . 5 wff (𝑓𝑧) ∈ 𝑧
149, 13wi 4 . . . 4 wff (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
1514, 6, 2wral 2909 . . 3 wff 𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
1615, 10wex 1702 . 2 wff 𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
175, 16wi 4 1 wff (𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
 Colors of variables: wff setvar class This axiom is referenced by:  axcc2lem  9243  axccdom  39232  axccd  39245
 Copyright terms: Public domain W3C validator