HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his1 Structured version   Visualization version   GIF version

Axiom ax-his1 27112
Description: Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. Note that ∗‘𝑥 is the complex conjugate cjval 13547 of 𝑥. In the literature, the inner product of 𝐴 and 𝐵 is usually written 𝐴, 𝐵, but our operation notation co 6425 allows us to use existing theorems about operations and also avoids a clash with the definition of an ordered pair df-op 4035. Physicists use 𝐵𝐴, called Dirac bra-ket notation, to represent this operation; see comments in df-bra 27882. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))

Detailed syntax breakdown of Axiom ax-his1
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chil 26949 . . . 4 class
31, 2wcel 1938 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 1938 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 382 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 csp 26952 . . . 4 class ·ih
81, 4, 7co 6425 . . 3 class (𝐴 ·ih 𝐵)
94, 1, 7co 6425 . . . 4 class (𝐵 ·ih 𝐴)
10 ccj 13541 . . . 4 class
119, 10cfv 5689 . . 3 class (∗‘(𝐵 ·ih 𝐴))
128, 11wceq 1474 . 2 wff (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))
136, 12wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
Colors of variables: wff setvar class
This axiom is referenced by:  his5  27116  his7  27120  his2sub2  27123  hire  27124  hi02  27127  his1i  27130  abshicom  27131  hial2eq2  27137  orthcom  27138  adjsym  27865  cnvadj  27924  adj2  27966
  Copyright terms: Public domain W3C validator