HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvdistr1 Structured version   Visualization version   GIF version

Axiom ax-hvdistr1 27031
Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvdistr1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvdistr1
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 9693 . . . 4 class
31, 2wcel 1938 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
5 chil 26942 . . . 4 class
64, 5wcel 1938 . . 3 wff 𝐵 ∈ ℋ
7 cC . . . 4 class 𝐶
87, 5wcel 1938 . . 3 wff 𝐶 ∈ ℋ
93, 6, 8w3a 1030 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
10 cva 26943 . . . . 5 class +
114, 7, 10co 6431 . . . 4 class (𝐵 + 𝐶)
12 csm 26944 . . . 4 class ·
131, 11, 12co 6431 . . 3 class (𝐴 · (𝐵 + 𝐶))
141, 4, 12co 6431 . . . 4 class (𝐴 · 𝐵)
151, 7, 12co 6431 . . . 4 class (𝐴 · 𝐶)
1614, 15, 10co 6431 . . 3 class ((𝐴 · 𝐵) + (𝐴 · 𝐶))
1713, 16wceq 1474 . 2 wff (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))
189, 17wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvsub4  27060  hvsubass  27067  hvsubdistr1  27072  hvdistr1i  27074  hv2times  27084  hilvc  27185  hhssnv  27287  shscli  27342  spanunsni  27604  hoadddi  27828  lnopmi  28025  lnophsi  28026
  Copyright terms: Public domain W3C validator