 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12w Structured version   Visualization version   GIF version

Theorem ax12w 1958
 Description: Weak version of ax-12 1983 from which we can prove any ax-12 1983 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. An instance of the first hypothesis will normally require that 𝑥 and 𝑦 be distinct (unless 𝑥 does not occur in 𝜑). For an example of how the hypotheses can be eliminated when we substitute an expression without wff variables for 𝜑, see ax12wdemo 1960. (Contributed by NM, 10-Apr-2017.)
Hypotheses
Ref Expression
ax12w.1 (𝑥 = 𝑦 → (𝜑𝜓))
ax12w.2 (𝑦 = 𝑧 → (𝜑𝜒))
Assertion
Ref Expression
ax12w (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝑦,𝑧   𝜓,𝑥   𝜑,𝑧   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧)

Proof of Theorem ax12w
StepHypRef Expression
1 ax12w.2 . . 3 (𝑦 = 𝑧 → (𝜑𝜒))
21spw 1916 . 2 (∀𝑦𝜑𝜑)
3 ax12w.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
43ax12wlem 1957 . 2 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
52, 4syl5 33 1 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 194  ∀wal 1472 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885 This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695 This theorem is referenced by:  ax12wdemo  1960
 Copyright terms: Public domain W3C validator