MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax13 Structured version   Visualization version   GIF version

Theorem ax13 2248
Description: Derive ax-13 2245 from ax13v 2246 and Tarski's FOL. This shows that the weakening in ax13v 2246 is still sufficient for a complete system. (Contributed by NM, 21-Dec-2015.) (Proof shortened by Wolf Lammen, 31-Jan-2018.) Reduce axiom usage (Revised by Wolf Lammen, 2-Jun-2021.)
Assertion
Ref Expression
ax13 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))

Proof of Theorem ax13
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 equvinv 1956 . . . 4 (𝑦 = 𝑧 ↔ ∃𝑤(𝑤 = 𝑦𝑤 = 𝑧))
2 ax13lem1 2247 . . . . . . . . 9 𝑥 = 𝑦 → (𝑤 = 𝑦 → ∀𝑥 𝑤 = 𝑦))
32imp 445 . . . . . . . 8 ((¬ 𝑥 = 𝑦𝑤 = 𝑦) → ∀𝑥 𝑤 = 𝑦)
4 ax13lem1 2247 . . . . . . . . 9 𝑥 = 𝑧 → (𝑤 = 𝑧 → ∀𝑥 𝑤 = 𝑧))
54imp 445 . . . . . . . 8 ((¬ 𝑥 = 𝑧𝑤 = 𝑧) → ∀𝑥 𝑤 = 𝑧)
6 ax7v1 1934 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤 = 𝑧𝑦 = 𝑧))
76imp 445 . . . . . . . . 9 ((𝑤 = 𝑦𝑤 = 𝑧) → 𝑦 = 𝑧)
87alanimi 1741 . . . . . . . 8 ((∀𝑥 𝑤 = 𝑦 ∧ ∀𝑥 𝑤 = 𝑧) → ∀𝑥 𝑦 = 𝑧)
93, 5, 8syl2an 494 . . . . . . 7 (((¬ 𝑥 = 𝑦𝑤 = 𝑦) ∧ (¬ 𝑥 = 𝑧𝑤 = 𝑧)) → ∀𝑥 𝑦 = 𝑧)
109an4s 868 . . . . . 6 (((¬ 𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) ∧ (𝑤 = 𝑦𝑤 = 𝑧)) → ∀𝑥 𝑦 = 𝑧)
1110ex 450 . . . . 5 ((¬ 𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) → ((𝑤 = 𝑦𝑤 = 𝑧) → ∀𝑥 𝑦 = 𝑧))
1211exlimdv 1858 . . . 4 ((¬ 𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) → (∃𝑤(𝑤 = 𝑦𝑤 = 𝑧) → ∀𝑥 𝑦 = 𝑧))
131, 12syl5bi 232 . . 3 ((¬ 𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧) → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
1413ex 450 . 2 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)))
15 ax13b 1961 . 2 ((¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))))
1614, 15mpbir 221 1 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1478  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-13 2245
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702
This theorem is referenced by:  equvini  2345  sbequi  2374
  Copyright terms: Public domain W3C validator