MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax1rid Structured version   Visualization version   GIF version

Theorem ax1rid 10577
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, derived from ZF set theory. Weakened from the original axiom in the form of statement in mulid1 10633, based on ideas by Eric Schmidt. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 10601. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ax1rid (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)

Proof of Theorem ax1rid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-r 10541 . 2 ℝ = (R × {0R})
2 oveq1 7157 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ · 1) = (𝐴 · 1))
3 id 22 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → ⟨𝑥, 𝑦⟩ = 𝐴)
42, 3eqeq12d 2837 . 2 (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (𝐴 · 1) = 𝐴))
5 elsni 4577 . . 3 (𝑦 ∈ {0R} → 𝑦 = 0R)
6 df-1 10539 . . . . . . 7 1 = ⟨1R, 0R
76oveq2i 7161 . . . . . 6 (⟨𝑥, 0R⟩ · 1) = (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩)
8 1sr 10497 . . . . . . . 8 1RR
9 mulresr 10555 . . . . . . . 8 ((𝑥R ∧ 1RR) → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩)
108, 9mpan2 689 . . . . . . 7 (𝑥R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨(𝑥 ·R 1R), 0R⟩)
11 1idsr 10514 . . . . . . . 8 (𝑥R → (𝑥 ·R 1R) = 𝑥)
1211opeq1d 4802 . . . . . . 7 (𝑥R → ⟨(𝑥 ·R 1R), 0R⟩ = ⟨𝑥, 0R⟩)
1310, 12eqtrd 2856 . . . . . 6 (𝑥R → (⟨𝑥, 0R⟩ · ⟨1R, 0R⟩) = ⟨𝑥, 0R⟩)
147, 13syl5eq 2868 . . . . 5 (𝑥R → (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩)
15 opeq2 4797 . . . . . . 7 (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩)
1615oveq1d 7165 . . . . . 6 (𝑦 = 0R → (⟨𝑥, 𝑦⟩ · 1) = (⟨𝑥, 0R⟩ · 1))
1716, 15eqeq12d 2837 . . . . 5 (𝑦 = 0R → ((⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 0R⟩ · 1) = ⟨𝑥, 0R⟩))
1814, 17syl5ibr 248 . . . 4 (𝑦 = 0R → (𝑥R → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩))
1918impcom 410 . . 3 ((𝑥R𝑦 = 0R) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)
205, 19sylan2 594 . 2 ((𝑥R𝑦 ∈ {0R}) → (⟨𝑥, 𝑦⟩ · 1) = ⟨𝑥, 𝑦⟩)
211, 4, 20optocl 5639 1 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  {csn 4560  cop 4566  (class class class)co 7150  Rcnr 10281  0Rc0r 10282  1Rc1r 10283   ·R cmr 10286  cr 10530  1c1 10532   · cmul 10536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8283  df-ec 8285  df-qs 8289  df-ni 10288  df-pli 10289  df-mi 10290  df-lti 10291  df-plpq 10324  df-mpq 10325  df-ltpq 10326  df-enq 10327  df-nq 10328  df-erq 10329  df-plq 10330  df-mq 10331  df-1nq 10332  df-rq 10333  df-ltnq 10334  df-np 10397  df-1p 10398  df-plp 10399  df-mp 10400  df-ltp 10401  df-enr 10471  df-nr 10472  df-plr 10473  df-mr 10474  df-0r 10476  df-1r 10477  df-m1r 10478  df-c 10537  df-1 10539  df-r 10541  df-mul 10543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator