Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax6e2ndVD Structured version   Visualization version   GIF version

Theorem ax6e2ndVD 38627
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 38267) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2nd 38256 is ax6e2ndVD 38627 without virtual deductions and was automatically derived from ax6e2ndVD 38627. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ ∃𝑦𝑦 = 𝑣 2:: ⊢ 𝑢 ∈ V 3:1,2: ⊢ (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣) 4:3: ⊢ ∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) 5:: ⊢ (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢) 6:5: ⊢ ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) 7:6: ⊢ (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦 (∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) 8:4,7: ⊢ ∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) 9:: ⊢ (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣) 10:: ⊢ (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣) 11:: ⊢ (   𝑧 = 𝑦   ▶   𝑧 = 𝑦   ) 12:11: ⊢ (   𝑧 = 𝑦   ▶   (𝑧 = 𝑣 ↔ 𝑦 = 𝑣)   ) 120:11: ⊢ (𝑧 = 𝑦 → (𝑧 = 𝑣 ↔ 𝑦 = 𝑣)) 13:9,10,120: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)) 14:: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   ) 15:14,13: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣)   ) 16:15: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)) 17:16: ⊢ (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)) 18:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 ) 19:17,18: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀ 𝑥𝑦 = 𝑣)) 20:14,19: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∀𝑥(𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)   ) 21:20: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 22:21: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 23:22: ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 24:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 ) 25:23,24: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 26:14,25: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∀𝑦((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 27:26: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 28:8,27: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 29:28: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) qed:29: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
Assertion
Ref Expression
ax6e2ndVD (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣

Proof of Theorem ax6e2ndVD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3189 . . . . . . 7 𝑢 ∈ V
2 ax6e 2249 . . . . . . 7 𝑦 𝑦 = 𝑣
31, 2pm3.2i 471 . . . . . 6 (𝑢 ∈ V ∧ ∃𝑦 𝑦 = 𝑣)
4 19.42v 1915 . . . . . . 7 (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (𝑢 ∈ V ∧ ∃𝑦 𝑦 = 𝑣))
54biimpri 218 . . . . . 6 ((𝑢 ∈ V ∧ ∃𝑦 𝑦 = 𝑣) → ∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣))
63, 5e0a 38481 . . . . 5 𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
7 isset 3193 . . . . . . 7 (𝑢 ∈ V ↔ ∃𝑥 𝑥 = 𝑢)
87anbi1i 730 . . . . . 6 ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥 𝑥 = 𝑢𝑦 = 𝑣))
98exbii 1771 . . . . 5 (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣))
106, 9mpbi 220 . . . 4 𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣)
11 idn1 38272 . . . . . 6 (    ¬ ∀𝑥 𝑥 = 𝑦   ▶    ¬ ∀𝑥 𝑥 = 𝑦   )
12 hbnae 2316 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦)
13 hbn1 2017 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦)
14 ax-5 1836 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → ∀𝑥 𝑧 = 𝑣)
15 ax-5 1836 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 → ∀𝑧 𝑦 = 𝑣)
16 idn1 38272 . . . . . . . . . . . . . . . . . 18 (   𝑧 = 𝑦   ▶   𝑧 = 𝑦   )
17 equequ1 1949 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → (𝑧 = 𝑣𝑦 = 𝑣))
1816, 17e1a 38334 . . . . . . . . . . . . . . . . 17 (   𝑧 = 𝑦   ▶   (𝑧 = 𝑣𝑦 = 𝑣)   )
1918in1 38269 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝑧 = 𝑣𝑦 = 𝑣))
2014, 15, 19dvelimh 2335 . . . . . . . . . . . . . . 15 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣))
2111, 20e1a 38334 . . . . . . . . . . . . . 14 (    ¬ ∀𝑥 𝑥 = 𝑦   ▶   (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣)   )
2221in1 38269 . . . . . . . . . . . . 13 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣))
2322alimi 1736 . . . . . . . . . . . 12 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣))
2413, 23syl 17 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣))
2511, 24e1a 38334 . . . . . . . . . 10 (    ¬ ∀𝑥 𝑥 = 𝑦   ▶   𝑥(𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣)   )
26 19.41rg 38248 . . . . . . . . . 10 (∀𝑥(𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣) → ((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
2725, 26e1a 38334 . . . . . . . . 9 (    ¬ ∀𝑥 𝑥 = 𝑦   ▶   ((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
2827in1 38269 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → ((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
2928alimi 1736 . . . . . . 7 (∀𝑦 ¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
3012, 29syl 17 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
3111, 30e1a 38334 . . . . 5 (    ¬ ∀𝑥 𝑥 = 𝑦   ▶   𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
32 exim 1758 . . . . 5 (∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)) → (∃𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
3331, 32e1a 38334 . . . 4 (    ¬ ∀𝑥 𝑥 = 𝑦   ▶   (∃𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
34 pm2.27 42 . . . 4 (∃𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ((∃𝑦(∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣)) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
3510, 33, 34e01 38398 . . 3 (    ¬ ∀𝑥 𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣)   )
36 excomim 2040 . . 3 (∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
3735, 36e1a 38334 . 2 (    ¬ ∀𝑥 𝑥 = 𝑦   ▶   𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)   )
3837in1 38269 1 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478   = wceq 1480  ∃wex 1701   ∈ wcel 1987  Vcvv 3186 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-v 3188  df-vd1 38268 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator