MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax9 Structured version   Visualization version   GIF version

Theorem ax9 2128
Description: Proof of ax-9 2124 from ax9v1 2126 and ax9v2 2127, proving sufficiency of the conjunction of the latter two weakened versions of ax9v 2125, which is itself a weakened version of ax-9 2124. (Contributed by BJ, 7-Dec-2020.) (Proof shortened by Wolf Lammen, 11-Apr-2021.)
Assertion
Ref Expression
ax9 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))

Proof of Theorem ax9
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 equvinv 2036 . 2 (𝑥 = 𝑦 ↔ ∃𝑡(𝑡 = 𝑥𝑡 = 𝑦))
2 ax9v2 2127 . . . . 5 (𝑥 = 𝑡 → (𝑧𝑥𝑧𝑡))
32equcoms 2027 . . . 4 (𝑡 = 𝑥 → (𝑧𝑥𝑧𝑡))
4 ax9v1 2126 . . . 4 (𝑡 = 𝑦 → (𝑧𝑡𝑧𝑦))
53, 4sylan9 510 . . 3 ((𝑡 = 𝑥𝑡 = 𝑦) → (𝑧𝑥𝑧𝑦))
65exlimiv 1931 . 2 (∃𝑡(𝑡 = 𝑥𝑡 = 𝑦) → (𝑧𝑥𝑧𝑦))
71, 6sylbi 219 1 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-9 2124
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1781
This theorem is referenced by:  elequ2  2129  el  5272  fv3  6690  elirrv  9062  bj-ax89  34013  bj-dtru  34141  axc11next  40745
  Copyright terms: Public domain W3C validator