 Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc11n11 Structured version   Visualization version   GIF version

Theorem axc11n11 32797
 Description: Proof of axc11n 2342 from { ax-1 6-- ax-7 1981, axc11 2347 } . Almost identical to axc11nfromc11 34530. (Contributed by NM, 6-Jul-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
axc11n11 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Proof of Theorem axc11n11
StepHypRef Expression
1 axc11 2347 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦))
21pm2.43i 52 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)
3 equcomi 1990 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
42, 3sylg 1790 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1745  df-nf 1750 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator