 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16b Structured version   Visualization version   GIF version

Theorem axc16b 4779
 Description: This theorem shows that axiom ax-c16 32991 is redundant in the presence of theorem dtru 4778, which states simply that at least two things exist. This justifies the remark at mmzfcnd.html#twoness (which links to this theorem). (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
axc16b (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem axc16b
StepHypRef Expression
1 dtru 4778 . 2 ¬ ∀𝑥 𝑥 = 𝑦
21pm2.21i 114 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1472 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-nul 4712  ax-pow 4764 This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator