Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16nfALT Structured version   Visualization version   GIF version

Theorem axc16nfALT 2322
 Description: Alternate proof of axc16nf 2133, shorter but requiring ax-11 2031 and ax-13 2245. (Contributed by Mario Carneiro, 7-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc16nfALT (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem axc16nfALT
StepHypRef Expression
1 nfae 2315 . 2 𝑧𝑥 𝑥 = 𝑦
2 axc16g 2130 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
31, 2nf5d 2115 1 (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1478  Ⅎwnf 1705 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator