Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axc5 Structured version   Visualization version   GIF version

Theorem axc5 34497
Description: This theorem repeats sp 2091 under the name axc5 34497, so that the metamath program's "verify markup" command will check that it matches axiom scheme ax-c5 34487. It is preferred that references to this theorem use the name sp 2091. (Contributed by NM, 18-Aug-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
axc5 (∀𝑥𝜑𝜑)

Proof of Theorem axc5
StepHypRef Expression
1 sp 2091 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-12 2087
This theorem depends on definitions:  df-bi 197  df-ex 1745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator