MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4dom Structured version   Visualization version   GIF version

Theorem axcc4dom 9207
Description: Relax the constraint on axcc4 9205 to dominance instead of equinumerosity. (Contributed by Mario Carneiro, 18-Jan-2014.)
Hypotheses
Ref Expression
axcc4dom.1 𝐴 ∈ V
axcc4dom.2 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
Assertion
Ref Expression
axcc4dom ((𝑁 ≼ ω ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝑁,𝑛   𝜑,𝑓   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝜓(𝑓,𝑛)   𝑁(𝑥)

Proof of Theorem axcc4dom
StepHypRef Expression
1 brdom2 7929 . . 3 (𝑁 ≼ ω ↔ (𝑁 ≺ ω ∨ 𝑁 ≈ ω))
2 isfinite 8493 . . . . 5 (𝑁 ∈ Fin ↔ 𝑁 ≺ ω)
3 axcc4dom.2 . . . . . . 7 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
43ac6sfi 8148 . . . . . 6 ((𝑁 ∈ Fin ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
54ex 450 . . . . 5 (𝑁 ∈ Fin → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
62, 5sylbir 225 . . . 4 (𝑁 ≺ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
7 raleq 3127 . . . . . 6 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛𝑁𝑥𝐴 𝜑 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑))
8 feq2 5984 . . . . . . . 8 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑓:𝑁𝐴𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴))
9 raleq 3127 . . . . . . . 8 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∀𝑛𝑁 𝜓 ↔ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))
108, 9anbi12d 746 . . . . . . 7 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓) ↔ (𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))
1110exbidv 1847 . . . . . 6 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓) ↔ ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓)))
127, 11imbi12d 334 . . . . 5 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → ((∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)) ↔ (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))))
13 axcc4dom.1 . . . . . 6 𝐴 ∈ V
14 breq1 4616 . . . . . . 7 (𝑁 = if(𝑁 ≈ ω, 𝑁, ω) → (𝑁 ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω))
15 breq1 4616 . . . . . . 7 (ω = if(𝑁 ≈ ω, 𝑁, ω) → (ω ≈ ω ↔ if(𝑁 ≈ ω, 𝑁, ω) ≈ ω))
16 omex 8484 . . . . . . . 8 ω ∈ V
1716enref 7932 . . . . . . 7 ω ≈ ω
1814, 15, 17elimhyp 4118 . . . . . 6 if(𝑁 ≈ ω, 𝑁, ω) ≈ ω
1913, 18, 3axcc4 9205 . . . . 5 (∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)∃𝑥𝐴 𝜑 → ∃𝑓(𝑓:if(𝑁 ≈ ω, 𝑁, ω)⟶𝐴 ∧ ∀𝑛 ∈ if (𝑁 ≈ ω, 𝑁, ω)𝜓))
2012, 19dedth 4111 . . . 4 (𝑁 ≈ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
216, 20jaoi 394 . . 3 ((𝑁 ≺ ω ∨ 𝑁 ≈ ω) → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
221, 21sylbi 207 . 2 (𝑁 ≼ ω → (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
2322imp 445 1 ((𝑁 ≼ ω ∧ ∀𝑛𝑁𝑥𝐴 𝜑) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wex 1701  wcel 1987  wral 2907  wrex 2908  Vcvv 3186  ifcif 4058   class class class wbr 4613  wf 5843  cfv 5847  ωcom 7012  cen 7896  cdom 7897  csdm 7898  Fincfn 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cc 9201
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903
This theorem is referenced by:  2ndcctbss  21168  2ndcsep  21172  iscmet3  22999  heiborlem3  33244
  Copyright terms: Public domain W3C validator